Frequency acquisition techniques for phase locked loop / (Record no. 42423)

000 -LEADER
fixed length control field 10400nam a2201141 i 4500
001 - CONTROL NUMBER
control field 6331041
003 - CONTROL NUMBER IDENTIFIER
control field IEEE
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20191218152123.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |n|||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151222s2012 nju ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781118383285
Qualifying information ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781118168103
Qualifying information print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 1118383281
Qualifying information electronic
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9781118383285
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (CaBNVSL)mat06331041
035 ## - SYSTEM CONTROL NUMBER
System control number (IDAMS)0b0000648193dda6
040 ## - CATALOGING SOURCE
Original cataloging agency CaBNVSL
Language of cataloging eng
Description conventions rda
Transcribing agency CaBNVSL
Modifying agency CaBNVSL
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK7872.P38
Item number T34 2012eb
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.3815/364
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Talbot, Daniel
Fuller form of name (Daniel B.)
Relator term author.
245 10 - TITLE STATEMENT
Title Frequency acquisition techniques for phase locked loop /
Statement of responsibility, etc. author Daniel Talbot.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Hoboken, New Jersey :
Name of producer, publisher, distributor, manufacturer John Wiley & Sons, Inc.,
Date of production, publication, distribution, manufacture, or copyright notice [2012]
264 #2 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture [Piscataqay, New Jersey] :
Name of producer, publisher, distributor, manufacturer IEEE Xplore,
Date of production, publication, distribution, manufacture, or copyright notice [2012]
300 ## - PHYSICAL DESCRIPTION
Extent 1 PDF (224 pages).
336 ## - CONTENT TYPE
Content type term text
Source rdacontent
337 ## - MEDIA TYPE
Media type term electronic
Source isbdmedia
338 ## - CARRIER TYPE
Carrier type term online resource
Source rdacarrier
500 ## - GENERAL NOTE
General note In Wiley online library
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Preface xi -- 1 Introduction 1 -- 2 A Review of PLL Fundamentals 3 -- 2.1 What is a PLL?, 3 -- 2.2 Second-Order PLL, 7 -- 2.3 Second-Order PLL Type One, 7 -- 2.4 Second-Order PLL Type Two, 7 -- 2.5 Higher-Order PLL's, 8 -- 2.6 Disturbances, 8 -- 2.7 Frequency Steering and Capture, 9 -- 2.8 Effect of DC Offsets or Noise Prior to the Loop Filter, 10 -- 2.9 Injection-Locked Oscillations, 15 -- 3 Simulating the PLL Linear Operation Mode 17 -- 3.1 Linear Model, 17 -- 3.2 A Word About Damping, 19 -- 4 Sideband Suppression Filtering 21 -- 4.1 Reference Sidebands and VCO Pushing, 21 -- 4.2 Superiority of the Cauer (or Elliptical) Filter, 22 -- 5 Pros and Cons of Sampled Data Phase Detection 25 -- 5.1 What are the Forms of Sampled Data Phase Detectors?, 25 -- 5.2 A. Ramp and Sample Analog Phase Detector, 25 -- 5.3 B. The RF Sampling Phase Detector, 28 -- 5.4 C. Edge-Triggered S-R Flip-Flop, 29 -- 5.5 D. Edge-Triggered Flip-Flop Ensemble, 31 -- 5.6 E. Sample and Hold as a Phase Detector, 31 -- 6 Phase Compression 33 -- 7 Hard Limiting of a Signal Plus Noise 35 -- 8 Phase Noise and Other Spurious Interferers 39 -- 8.1 The Mechanism for Phase Noise in an Oscillator, 42 -- 8.2 Additive Noise in an FM Channel and the Bowtie, 42 -- 8.3 Importance of FM Theory to Frequency Acquisition, 45 -- 9 Impulse Modulation and Noise Aliasing 47 -- 9.1 Impulse Train Spectrum, 47 -- 9.2 Sampling Phase Detector Noise, 47 -- 9.3 Spur Aliasing, 50 -- 10 Time and Phase Jitter, Heterodyning, and Multiplication 53 -- 10.1 Heterodyning and Resulting Time Jitter, 53 -- 10.2 Frequency Multiplication and Angle Modulation Index, 54 -- 10.3 Frequency Multiplication's Role in Carrier Recovery, 54 -- 11 Carrier Recovery Applications and Acquisition 57 -- 11.1 Frequency Multiplier Carrier Recovery in General, 57 -- 11.2 The Simplest Form of Costas PLL, 59 -- 11.3 Higher Level Quadrature Demodulation Costas PLL, 61 -- 11.4 False Lock in BPSK Costas PLL, 62 -- 11.5 Additional Measures for Prevention of False Locking, 65.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 11.6 False Lock Prevention Using DC Offset, 72 -- 12 Notes on Sweep Methods 73 -- 12.1 Sweep Waveform Superimposed Directly on VCO Input, 73 -- 12.2 Maximum Sweep Rate (Acceleration), 74 -- 12.3 False Lock due to High-Order Filtering, 77 -- 12.4 Sweep Waveform Applied Directly to PLL Loop Integrator, 79 -- 12.5 Self-Sweeping PLL, 79 -- 13 Nonsweep Acquisition Methods 85 -- 13.1 Delay Line Frequency Discriminator, 85 -- 13.2 The Fully Unbalanced Quadricorrelator, 87 -- 13.3 The Fully Balanced Quadricorrelator, 88 -- 13.4 The Multipulse Balanced Quadricorrelator, 89 -- 13.5 Conclusion Regarding Pulsed Frequency Detection, 91 -- 13.6 Quadricorrelator Linearity, 92 -- 13.7 Limiter Asymmetry due to DC Offset, 97 -- 13.8 Taylor Series Demonstrates Second-Order-Caused DC Offset, 100 -- 13.9 Third-Order Intermodulation Distortion and Taylor Series, 101 -- 14 AM Rejection in Frequency Detection Schemes 105 -- 14.1 AM Rejection with Limiter and Interferer, 105 -- 14.2 AM Rejection of the Balanced Limiter/Quadricorrelator Versus the Limiter/Discriminator in the Presence of a Single Spur, 106 -- 14.3 Impairment due to Filter Response Tilt (Asymmetry), 110 -- 14.4 Bandpass Filter Geometric and Arithmetic Symmetry, 114 -- 14.5 Comments on Degree of Scrutiny, 117 -- 15 Interfacing the Frequency Discriminator to the PLL 119 -- 15.1 Continuous Connection: Pros and Cons, 119 -- 15.2 Connection to PLL via a Dead Band, 120 -- 15.3 Switched Connection, 121 -- 16 Actual Frequency Discriminator Implementations 125 -- 16.1 Quadricorrelator, Low-Frequency Implementation, 125 -- 16.2 Frequency Ratio Calculating Circuit for Wide-Bandwidth Use, 128 -- 16.3 Dividing the Frequency and Resultant Implementation, 131 -- 16.4 Marriage of Both Frequency and Phaselock Loops, 135 -- 16.5 Comments on Spurs' Numerical Influence on the VCO, 141 -- 16.6 Frequency Compression, 143 -- 17 Clock Recovery Using a PLL 145 -- 17.1 PLL Only, 145 -- 17.2 PLL with Sideband Crystal Filter(s), 152 -- 17.3 PLL with Sideband Cavity Filter, 153.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 17.4 The Hogge Phase Detector, 161 -- 17.5 Bang-Bang Phase Detectors, 162 -- 18 Frequency Synthesis Applications 165 -- 18.1 Direct Frequency Synthesis with Wadley Loop, 166 -- 18.2 Indirect Frequency Synthesis with PLLs, 173 -- 18.3 Simple Frequency Acquisition Improvement for a PLL, 175 -- 18.4 Hybrid Frequency Synthesis with DDS and PLL, 176 -- 18.5 Phase Noise Considerations, 181 -- 18.6 Pros and Cons of DDS-Augmented Synthesis, 185 -- 18.7 Multiple Loops, 185 -- 18.8 Reference Signal Considerations and Filtering, 186 -- 18.9 SNR of Various Phase Detectors, 187 -- 18.10 Phase Detector Dead Band (Dead Zone) and Remediation, 187 -- 18.11 Sideband Energy due to DC Offset Following Phase Detector, 191 -- 18.12 Brute Force PLL Frequency Acquisition via Speedup, 193 -- 18.13 Short-Term and Long-Term Settling, 193 -- 18.14 N-over-M Synthesis, 193 -- 19 Injection Pulling of Multiple VCO's as in a Serdes 195 -- 19.1 Allowable Coupling Between any Two VCOs Versus Q and BW, 195 -- 19.2 Topology Suggestion for Eliminating the Injection Pulling, 195 -- 20 Digital PLL Example 199 -- 21 Conclusion 203 -- References 205 -- Index 209.
506 1# - RESTRICTIONS ON ACCESS NOTE
Terms governing access Restricted to subscribers or individual electronic text purchasers.
520 ## - SUMMARY, ETC.
Summary, etc. How to acquire the input frequency from an unlocked stateA phase locked loop (PLL) by itself cannot become useful until it has acquired the applied signal's frequency. Often, a PLL will never reach frequency acquisition (capture) without explicit assistive circuits. Curiously, few books on PLLs treat the topic of frequency acquisition in any depth or detail. Frequency Acquisition Techniques for Phase Locked Loops offers a no-nonsense treatment that is equally useful for engineers, technicians, and managers.Since mathematical rigor for its own sake can degenerate into intellectual "rigor mortis," the author introduces readers to the basics and delivers useful information with clear language and minimal mathematics. With most of the approaches having been developed through years of experience, this completely practical guide explores methods for achieving the locked state in a variety of conditions as it examines:. Performance limitations of phase/frequency detector-based phase locked loops. The quadricorrelator method for both continuous and sampled modes. Sawtooth ramp-and-sample phase detector and how its waveform contains frequency error information that can be extracted. The benefits of a self-sweeping, self-extinguishing topology. Sweep methods using quadrature mixer-based lock detection. The use of digital implementations versus analogFrequency Acquisition Techniques for Phase Locked Loops is an important resource for RF/microwave engineers, in particular, circuit designers; practicing electronics engineers involved in frequency synthesis, phase locked loops, carrier or clock recovery loops, radio-frequency integrated circuit design, and aerospace electronics; and managers wanting to understand the technology of phase locked loops and frequency acquisition assistance techniques or jitter attenuating loops.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Also available in print.
538 ## - SYSTEM DETAILS NOTE
System details note Mode of access: World Wide Web
588 ## - SOURCE OF DESCRIPTION NOTE
Source of description note Description based on PDF viewed 12/22/2015.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Phase-locked loops.
655 #0 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
695 ## -
-- Repeaters
695 ## -
-- Resistors
695 ## -
-- Resonant frequency
695 ## -
-- Schottky diodes
695 ## -
-- Signal to noise ratio
695 ## -
-- Silicon germanium
695 ## -
-- Switches
695 ## -
-- Time frequency analysis
695 ## -
-- Topology
695 ## -
-- Transfer functions
695 ## -
-- Tuning
695 ## -
-- Vectors
695 ## -
-- Voltage control
695 ## -
-- Voltage-controlled oscillators
695 ## -
-- Wideband
695 ## -
-- Amplitude modulation
695 ## -
-- Bandwidth
695 ## -
-- Binary phase shift keying
695 ## -
-- CMOS integrated circuits
695 ## -
-- Clocks
695 ## -
-- Color
695 ## -
-- Couplings
695 ## -
-- Damping
695 ## -
-- Delay
695 ## -
-- Delay lines
695 ## -
-- Demodulation
695 ## -
-- Detectors
695 ## -
-- Feeds
695 ## -
-- Filtering theory
695 ## -
-- Frequency conversion
695 ## -
-- Frequency measurement
695 ## -
-- Frequency modulation
695 ## -
-- Frequency shift keying
695 ## -
-- Frequency synthesizers
695 ## -
-- Gain
695 ## -
-- Gallium arsenide
695 ## -
-- Image edge detection
695 ## -
-- Indexes
695 ## -
-- Jitter
695 ## -
-- Latches
695 ## -
-- Limiting
695 ## -
-- Mixers
695 ## -
-- Noise
695 ## -
-- Nonlinear distortion
695 ## -
-- Optical signal processing
695 ## -
-- Passband
695 ## -
-- Phase frequency detector
695 ## -
-- Phase locked loops
695 ## -
-- Phase modulation
695 ## -
-- Phase noise
695 ## -
-- Radiation detectors
695 ## -
-- Radio frequency
695 ## -
-- Rails
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element IEEE Xplore (Online Service),
Relator term distributor.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element John Wiley & Sons,
Relator term publisher.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
International Standard Book Number 9781118168103
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Abstract with links to resource
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6331041

No items available.


International Institute of Information Technology, Bangalore
26/C, Electronics City, Hosur Road,Bengaluru-560100 Contact Us
Koha & OPAC at IIITB deployed by Bhargav Sridhar & Team.

Powered by Koha