Fuzzy modeling and control of uncertain nonlinear systems / (Record no. 43146)

000 -LEADER
fixed length control field 08983nam a2200589 i 4500
001 - CONTROL NUMBER
control field 8826425
003 - CONTROL NUMBER IDENTIFIER
control field IEEE
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20191218152135.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr |n|||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 191003s2019 mau ob 001 eng d
015 ## - NATIONAL BIBLIOGRAPHY NUMBER
Canceled/invalid national bibliography number GBB9C5386 (print)
016 ## - NATIONAL BIBLIOGRAPHIC AGENCY CONTROL NUMBER
Canceled/invalid control number 019470506 (print)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119491514
Qualifying information electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119491525
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781119491552
Qualifying information print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781119491521
Qualifying information ePub ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 9781119491545
Qualifying information PDF ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Canceled/invalid ISBN 1119491541
Qualifying information PDF ebook
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1002/9781119491514
Source of number or code doi
035 ## - SYSTEM CONTROL NUMBER
System control number (CaBNVSL)mat08826425
035 ## - SYSTEM CONTROL NUMBER
System control number (IDAMS)0b0000648a1b4542
040 ## - CATALOGING SOURCE
Original cataloging agency CaBNVSL
Language of cataloging eng
Description conventions rda
Transcribing agency CaBNVSL
Modifying agency CaBNVSL
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 629.836
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Yu, Wen,
Relator term author.
245 10 - TITLE STATEMENT
Title Fuzzy modeling and control of uncertain nonlinear systems /
Statement of responsibility, etc. Wen Yu, Raheleh Jafari.
250 ## - EDITION STATEMENT
Edition statement 1st
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Hoboken :
Name of producer, publisher, distributor, manufacturer Wiley-IEEE Press,
Date of production, publication, distribution, manufacture, or copyright notice 2019.
264 #2 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture [Piscataqay, New Jersey] :
Name of producer, publisher, distributor, manufacturer IEEE Xplore,
Date of production, publication, distribution, manufacture, or copyright notice [2019]
300 ## - PHYSICAL DESCRIPTION
Extent 1 PDF (208 pages).
336 ## - CONTENT TYPE
Content type term text
Source rdacontent
337 ## - MEDIA TYPE
Media type term electronic
Source isbdmedia
338 ## - CARRIER TYPE
Carrier type term online resource
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement IEEE Press series on systems science and engineering
500 ## - GENERAL NOTE
General note

List of Figures xi

List of Tables xiii

Preface xv

1 Fuzzy Equations 1

1.1 Introduction 1

1.2 Fuzzy Equations 1

1.3 Algebraic Fuzzy Equations 3

1.4 Numerical Methods for Solving Fuzzy Equations 5

1.4.1 Newton Method 5

1.4.2 Steepest Descent Method 7

1.4.3 Adomian Decomposition Method 8

1.4.4 Ranking Method 9

1.4.5 Intelligent Methods 10

1.4.5.1 Genetic Algorithm Method 10

1.4.5.2 Neural Network Method 11

1.4.5.3 Fuzzy Linear Regression Model 14

1.5 Summary 20

2 Fuzzy Differential Equations 21

2.1 Introduction 21

2.2 Predictor-Corrector Method 21

2.3 Adomian Decomposition Method 23

2.4 Euler Method 23

2.5 Taylor Method 25

2.6 Runge-Kutta Method 25

2.7 Finite Difference Method 26

2.8 Differential Transform Method 28

2.9 Neural Network Method 29

2.10 Summary 36

3 Modeling and Control Using Fuzzy Equations 39

3.1 Fuzzy Modeling with Fuzzy Equations 39

3.1.1 Fuzzy Parameter Estimation with Neural Networks 45

3.1.2 Upper Bounds of the Modeling Errors 48

3.2 Control with Fuzzy Equations 52

3.3 Simulations 59

3.4 Summary 67

4 Modeling and Control Using Fuzzy Differential Equations 69

4.1 Introduction 69

4.2 Fuzzy Modeling with Fuzzy Differential Equations 69

4.3 Existence of a Solution 72

4.4 Solution Approximation using Bernstein Neural Networks 79

4.5 Solutions Approximation using the Fuzzy Sumudu Transform 83

4.6 Simulations 85

4.7 Summary 99

5 System Modeling with Partial Differential Equations 101

5.1 Introduction 101

5.2 Solutions using Burgers-Fisher Equations 101

5.3 Solution using Wave Equations 106

5.4 Simulations 109

5.5 Summary 117

6 System Control using Z-numbers 119

6.1 Introduction 119

6.2 Modeling using Dual Fuzzy Equations and Z-numbers 119

6.3 Controllability using Dual Fuzzy Equations 124

6.4 Fuzzy Controller 128

6.5 Nonlinear System Modeling 131

6.6 Controllability using Fuzzy Differential Equations 131

6.7 Fuzzy Controller Design using Fuzzy Differential Equations and Z-number 135

6.8 Approximation using a Fuzzy Sumudu Transform and Z-numbers 138

6.9 Simulations 139

6.10 Summary 151

References 153

Index 167

505 0# - FORMATTED CONTENTS NOTE
Formatted contents note List of Figures xi -- List of Tables xiii -- Preface xv -- 1 Fuzzy Equations 1 -- 1.1 Introduction 1 -- 1.2 Fuzzy Equations 1 -- 1.3 Algebraic Fuzzy Equations 3 -- 1.4 Numerical Methods for Solving Fuzzy Equations 5 -- 1.4.1 Newton Method 5 -- 1.4.2 Steepest Descent Method 7 -- 1.4.3 Adomian Decomposition Method 8 -- 1.4.4 Ranking Method 9 -- 1.4.5 Intelligent Methods 10 -- 1.4.5.1 Genetic Algorithm Method 10 -- 1.4.5.2 Neural Network Method 11 -- 1.4.5.3 Fuzzy Linear Regression Model 14 -- 1.5 Summary 20 -- 2 Fuzzy Differential Equations 21 -- 2.1 Introduction 21 -- 2.2 Predictor-Corrector Method 21 -- 2.3 Adomian Decomposition Method 23 -- 2.4 Euler Method 23 -- 2.5 Taylor Method 25 -- 2.6 Runge-Kutta Method 25 -- 2.7 Finite Difference Method 26 -- 2.8 Differential Transform Method 28 -- 2.9 Neural Network Method 29 -- 2.10 Summary 36 -- 3 Modeling and Control Using Fuzzy Equations 39 -- 3.1 Fuzzy Modeling with Fuzzy Equations 39 -- 3.1.1 Fuzzy Parameter Estimation with Neural Networks 45 -- 3.1.2 Upper Bounds of the Modeling Errors 48 -- 3.2 Control with Fuzzy Equations 52 -- 3.3 Simulations 59 -- 3.4 Summary 67 -- 4 Modeling and Control Using Fuzzy Differential Equations 69 -- 4.1 Introduction 69 -- 4.2 Fuzzy Modeling with Fuzzy Differential Equations 69 -- 4.3 Existence of a Solution 72 -- 4.4 Solution Approximation using Bernstein Neural Networks 79 -- 4.5 Solutions Approximation using the Fuzzy Sumudu Transform 83 -- 4.6 Simulations 85 -- 4.7 Summary 99 -- 5 System Modeling with Partial Differential Equations 101 -- 5.1 Introduction 101 -- 5.2 Solutions using Burgers-Fisher Equations 101 -- 5.3 Solution using Wave Equations 106 -- 5.4 Simulations 109 -- 5.5 Summary 117 -- 6 System Control using Z-numbers 119 -- 6.1 Introduction 119 -- 6.2 Modeling using Dual Fuzzy Equations and Z-numbers 119 -- 6.3 Controllability using Dual Fuzzy Equations 124 -- 6.4 Fuzzy Controller 128 -- 6.5 Nonlinear System Modeling 131 -- 6.6 Controllability using Fuzzy Differential Equations 131.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 6.7 Fuzzy Controller Design using Fuzzy Differential Equations and Z-number 135 -- 6.8 Approximation using a Fuzzy Sumudu Transform and Z-numbers 138 -- 6.9 Simulations 139 -- 6.10 Summary 151 -- References 153 -- Index 167.
506 ## - RESTRICTIONS ON ACCESS NOTE
Terms governing access Restricted to subscribers or individual electronic text purchasers.
520 ## - SUMMARY, ETC.
Summary, etc. An original, systematic-solution approach to uncertain nonlinear systems control and modeling using fuzzy equations and fuzzy differential equations There are various numerical and analytical approaches to the modeling and control of uncertain nonlinear systems. Fuzzy logic theory is an increasingly popular method used to solve inconvenience problems in nonlinear modeling. Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number presents a structured approach to the control and modeling of uncertain nonlinear systems in industry using fuzzy equations and fuzzy differential equations. The first major work to explore methods based on neural networks and Bernstein neural networks, this innovative volume provides a framework for control and modeling of uncertain nonlinear systems with applications to industry. Readers learn how to use fuzzy techniques to solve scientific and engineering problems and understand intelligent control design and applications. The text assembles the results of four years of research on control of uncertain nonlinear systems with dual fuzzy equations, fuzzy modeling for uncertain nonlinear systems with fuzzy equations, the numerical solution of fuzzy equations with Z-numbers, and the numerical solution of fuzzy differential equations with Z-numbers. Using clear and accessible language to explain concepts and principles applicable to real-world scenarios, this book: . Presents the modeling and control of uncertain nonlinear systems with fuzzy equations and fuzzy differential equations. Includes an overview of uncertain nonlinear systems for non-specialists. Teaches readers to use simulation, modeling and verification skills valuable for scientific research and engineering systems development. Reinforces comprehension with illustrations, tables, examples, and simulations Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number is suitable as a textbook for advanced students, academic and industrial researchers, and practitioners in fields of systems engineering, learning control systems, neural networks, computational intelligence, and fuzzy logic control.
530 ## - ADDITIONAL PHYSICAL FORM AVAILABLE NOTE
Additional physical form available note Also available in print.
538 ## - SYSTEM DETAILS NOTE
System details note Mode of access: World Wide Web
588 0# - SOURCE OF DESCRIPTION NOTE
Source of description note CIP data; resource not viewed.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Nonlinear systems
General subdivision Automatic control
-- Mathematics.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Fuzzy mathematics.
655 #0 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Jafari, Raheleh,
Relator term author.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element IEEE Xplore (Online Service),
Relator term distributor.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element Wiley,
Relator term publisher.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
International Standard Book Number 9781119491552
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title IEEE Press series on systems science and engineering
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Abstract with links to resource
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8826425

No items available.


International Institute of Information Technology, Bangalore
26/C, Electronics City, Hosur Road,Bengaluru-560100 Contact Us
Koha & OPAC at IIITB deployed by Bhargav Sridhar & Team.

Powered by Koha