Ultrafast optics /
Andrew M. Weiner.
- 1 PDF (xvii, 580 pages) : illustrations.
- Wiley series in pure and applied optics ; 72 .
- Wiley series in pure and applied optics. .
Includes bibliographical references (p. 533-562) and index.
Preface xiii -- 1 Introduction and Review 1 -- 1.1 Introduction to Ultrashort Laser Pulses 1 -- 1.2 Brief Review of Electromagnetics 4 -- 1.2.1 Maxwell's Equations 4 -- 1.2.2 The Wave Equation and Plane Waves 6 -- 1.2.3 Poynting's Vector and Power Flow 8 -- 1.3 Review of Laser Essentials 10 -- 1.3.1 Steady-State Laser Operation 10 -- 1.3.2 Gain and Gain Saturation in Four-Level Atoms 15 -- 1.3.3 Gaussian Beams and Transverse Laser Modes 17 -- 1.4 Introduction to Ultrashort Pulse Generation Through Mode-Locking 22 -- 1.5 Fourier Series and Fourier Transforms 25 -- 1.5.1 Analytical Aspects 25 -- 1.5.2 Computational Aspects 28 -- Problems 30 -- 2 Principles of Mode-Locking 32 -- 2.1 Processes Involved in Mode-Locking 32 -- 2.2 Active Mode-Locking 33 -- 2.2.1 Time-Domain Treatment 34 -- 2.2.2 Frequency-Domain Treatment 40 -- 2.2.3 Variations of Active Mode-Locking 43 -- 2.3 Passive Mode-Locking Using Saturable Absorbers 44 -- 2.3.1 Saturation Model 47 -- 2.3.2 Slow Saturable Absorber Mode-Locking 50 -- 2.3.3 Fast Saturable Absorber Mode-Locking 54 -- 2.4 Solid-State Laser Mode-Locking Using the Optical Kerr Effect 57 -- 2.4.1 Nonlinear Refractive Index Changes 57 -- 2.4.2 Self-Amplitude Modulation Self-Phase Modulation and Group Velocity Dispersion 58 -- 2.4.3 Additive Pulse Mode-Locking 60 -- 2.4.4 Kerr Lens Mode-Locking 64 -- 2.4.5 Mode-Locking Solutions 75 -- 2.4.6 Initiation of Mode-Locking 81 -- Problems 83 -- 3 Ultrafast-pulse Measurement Methods 85 -- 3.1 Terminology and Definitions 85 -- 3.2 Electric Field Autocorrelation Measurements and the Power Spectrum 88 -- 3.3 Electric Field Cross-Correlation Measurements and Spectral Interferometry 91 -- 3.3.1 Electric Field Cross-Correlation 92 -- 3.3.2 Spectral Interferometry 93 -- 3.3.3 Application: Optical Coherence Tomography 96 -- 3.4 Intensity Correlation Measurements 99 -- 3.4.1 Correlation Measurements Using Second-Harmonic Generation 99 -- 3.4.2 Experimental Procedures 108 -- 3.4.3 Correlation Measurements Using Two-Photon absorption 110. 3.4.4 Higher-Order Correlation Techniques 111 -- 3.5 Chirped Pulses and Measurements in the Time / Frequency Domain 112 -- 3.6 Frequency-Resolved Optical Gating 118 -- 3.6.1 Polarization-Gating FROG 119 -- 3.6.2 Self-Diffraction FROG 122 -- 3.6.3 Second-Harmonic-Generation FROG 124 -- 3.6.4 Frequency-Resolved Optical Gating Using Temporal Phase Modulation 125 -- 3.6.5 Signal Recovery from FROG Traces 126 -- 3.7 Pulse Measurements Based on Frequency Filtering 130 -- 3.7.1 Single-Slit Approaches 131 -- 3.7.2 Double-Slit Approach 134 -- 3.8 Self-Referencing Interferometry 135 -- 3.8.1 Time-Domain Interferometry of Chirped Pulses 135 -- 3.8.2 Self-Referencing Spectral Interferometry 137 -- 3.9 Characterization of Noise and Jitter 139 -- Problems 144 -- 4 Dispersion and Dispersion Compensation 147 -- 4.1 Group Velocity Dispersion 147 -- 4.1.1 Group Velocity Definition and General Dispersion Relations 147 -- 4.1.2 General Aspects of Material Dispersion 151 -- 4.2 Temporal Dispersion Based on Angular Dispersion 155 -- 4.2.1 Relation Between Angular and Temporal Dispersion 155 -- 4.2.2 Angular Dispersion and Tilted Intensity Fronts 159 -- 4.3 Dispersion of Grating Pairs 161 -- 4.4 Dispersion of Prism Pairs 166 -- 4.5 Dispersive Properties of Lenses 173 -- 4.6 Dispersion of Mirror Structures 177 -- 4.6.1 The Gires / Tournois Interferometer 178 -- 4.6.2 Quarter-Wave Stack High Reflectors 180 -- 4.6.3 Chirped Mirrors 182 -- 4.7 Measurements of Group Velocity Dispersion 186 -- 4.7.1 Interferometric Methods 187 -- 4.7.2 Frequency-Domain Intracavity Dispersion Measurements 190 -- 4.8 Appendix 191 -- 4.8.1 Frequency-Dependent Phase Due to Propagation Through a Slab: Alternative Derivation 191 -- 4.8.2 Impedance Method for Analysis of Dielectric Mirror Stacks 192 -- Problems 195 -- 5 Ultrafast Nonlinear Optics: Second Order 198 -- 5.1 Introduction to Nonlinear Optics 198 -- 5.2 The Forced Wave Equation 201 -- 5.2.1 Frequency-Domain Formulation 202 -- 5.2.2 Time-Domain Formulation 203. 5.3 Summary of Continuous-Wave Second-Harmonic Generation 204 -- 5.3.1 Effect of Phase Matching 207 -- 5.3.2 Phase Matching in Birefringent Media 209 -- 5.3.3 Focusing Effects in Continuous-Wave SHG 215 -- 5.4 Second-Harmonic Generation with Pulses 220 -- 5.4.1 SHG in the Quasi-Continuous-Wave Limit 220 -- 5.4.2 Ultrashort-Pulse SHG 221 -- 5.4.3 Quasi-Phase Matching 228 -- 5.4.4 Effect of Group Velocity Walk-off on SHG-Based Pulse Measurements 233 -- 5.5 Three-Wave Interactions 237 -- 5.5.1 Sum Frequency Generation 240 -- 5.5.2 Difference Frequency Generation 244 -- 5.5.3 Optical Parametric Amplification 245 -- 5.6 Appendix 253 -- 5.6.1 Spatial Walk-off and Pulse Fronts in Anisotropic Media 253 -- 5.6.2 Velocity Matching in Broadband Noncollinear Three-Wave -- Mixing 254 -- Problems 256 -- 6 Ultrafast Nonlinear Optics: Third Order 258 -- 6.1 Propagation Equation for Nonlinear Refractive Index Media 258 -- 6.1.1 Plane Waves in Uniform Media 260 -- 6.1.2 Nonlinear Propagation in Waveguides 261 -- 6.1.3 Optical Fiber Types 264 -- 6.2 The Nonlinear SchrŠ odinger Equation 266 -- 6.3 Self-Phase Modulation 270 -- 6.3.1 Dispersionless Self-Phase Modulation 270 -- 6.3.2 Dispersionless Self-Phase Modulation with Loss 273 -- 6.3.3 Self-Phase Modulation with Normal Dispersion 274 -- 6.3.4 Cross-Phase Modulation 275 -- 6.4 Pulse Compression 276 -- 6.5 Modulational Instability 283 -- 6.6 Solitons 286 -- 6.7 Higher-Order Propagation Effects 291 -- 6.7.1 Nonlinear Envelope Equation in Uniform Media 292 -- 6.7.2 Nonlinear Envelope Equation in Waveguides 295 -- 6.7.3 Delayed Nonlinear Response and the Raman Effect 296 -- 6.7.4 Self-Steepening 306 -- 6.7.5 Space / Time Focusing 308 -- 6.8 Continuum Generation 310 -- Problems 313 -- 7 Mode-Locking: Selected Advanced Topics 316 -- 7.1 Soliton Fiber Lasers: Artificial Fast Saturable Absorbers 316 -- 7.1.1 The Figure-Eight Laser 317 -- 7.1.2 Energy Quantization 322 -- 7.1.3 Soliton Sidebands 324 -- 7.2 Soliton Mode-Locking: Active Modulation and Slow Saturable Absorbers 328. 7.2.1 Harmonically Mode-Locked Soliton Fiber Lasers 328 -- 7.2.2 The Net Gain Window in Soliton Mode-Locking 330 -- 7.3 Stretched Pulse Mode-Locking 337 -- 7.3.1 Stretched Pulse Mode-Locked Fiber Laser 337 -- 7.3.2 Dispersion-Managed Solitons 340 -- 7.3.3 Theoretical Issues 342 -- 7.4 Mode-Locked Lasers in the Few-Cycle Regime 344 -- 7.5 Mode-Locked Frequency Combs 347 -- 7.5.1 Comb Basics 347 -- 7.5.2 Measurement Techniques 350 -- 7.5.3 Stabilization of Frequency Combs 354 -- 7.5.4 Applications 356 -- Problems 360 -- 8 Manipulation of Ultrashort Pulses 362 -- 8.1 Fourier Transform Pulse Shaping 362 -- 8.1.1 Examples of Pulse Shaping Using Fixed Masks 364 -- 8.1.2 Programmable Pulse Shaping 369 -- 8.1.3 Pulse-Shaping Theory 376 -- 8.2 Other Pulse-Shaping Techniques 386 -- 8.2.1 Direct Space-to-Time Pulse Shaping 386 -- 8.2.2 Acousto-optic Dispersive Filters 390 -- 8.3 Chirp Processing and Time Lenses 394 -- 8.3.1 Space / Time Duality 394 -- 8.3.2 Chirp Processing 397 -- 8.3.3 Time Lens Processing 399 -- 8.4 Ultrashort-Pulse Amplification 405 -- 8.4.1 Amplification Basics 406 -- 8.4.2 Special Issues in Femtosecond Amplifiers 411 -- 8.5 Appendix 416 -- 8.5.1 Fresnel Diffraction and Fourier Transform Property of a Lens 416 -- 8.5.2 Wave Optics Model of a Grating 418 -- Problems 420 -- 9 Ultrafast Time-Resolved Spectroscopy 422 -- 9.1 Introduction to Ultrafast Spectroscopy 422 -- 9.2 Degenerate Pump / Probe Transmission Measurements 426 -- 9.2.1 Co-polarized Fields: Scalar Treatment 426 -- 9.2.2 Vector Fields and Orientational Effects 431 -- 9.3 Nondegenerate and Spectrally Resolved Pump / Probe: Case Studies 439 -- 9.3.1 Femtosecond Pump / Probe Studies of Dye Molecules 440 -- 9.3.2 Femtosecond Pump / Probe Studies of GaAs 444 -- 9.4 Basic Quantum Mechanics for Coherent Short-Pulse Spectroscopies 451 -- 9.4.1 Some Basic Quantum Mechanics 451 -- 9.4.2 The Density Matrix 456 -- 9.5 Wave Packets 460 -- 9.5.1 Example: Semiconductor Quantum Wells 461 -- 9.5.2 Molecules 462 -- 9.6 Dephasing Phenomena 469. 9.6.1 Linear Spectroscopies 469 -- 9.6.2 Models of Dephasing 475 -- 9.6.3 Measurement of Dephasing Using Transient Gratings 481 -- 9.6.4 Two-Dimensional Spectroscopy 494 -- 9.7 Impulsive Stimulated Raman Scattering 499 -- Problems 505 -- 10 Terahertz Time-Domain Electromagnetics 507 -- 10.1 Ultrafast Electromagnetics: Transmission Lines 507 -- 10.1.1 Photoconductive Generation and Sampling 507 -- 10.1.2 Electro-optic Sampling 513 -- 10.2 Ultrafast Electromagnetics: Terahertz Beams 516 -- 10.2.1 Generation and Measurement of Terahertz Pulses 517 -- 10.2.2 Terahertz Spectroscopy and Imaging 527 -- Problems 531 -- References 533 -- Index 563.
Restricted to subscribers or individual electronic text purchasers.
A comprehensive treatment of ultrafast optics This book fills the need for a thorough and detailed account of ultrafast optics. Written by one of the most preeminent researchers in the field, it sheds new light on technology that has already had a revolutionary impact on precision frequency metrology, high-speed electrical testing, biomedical imaging, and in revealing the initial steps in chemical reactions. Ultrafast Optics begins with a summary of ultrashort laser pulses and their practical applications in a range of real-world settings. Next, it reviews important background material, including an introduction to Fourier series and Fourier transforms, and goes on to cover: . Principles of mode-locking . Ultrafast pulse measurement methods . Dispersion and dispersion compensation . Ultrafast nonlinear optics: second order . Ultrafast nonlinear optics: third order . Mode-locking: selected advanced topics . Manipulation of ultrashort pulses . Ultrafast time-resolved spectroscopy . Terahertz time-domain electromagnetics Professor Weiner's expertise and cutting-edge research result in a book that is destined to become a seminal text for engineers, researchers, and graduate students alike.