Normal view MARC view ISBD view

Smart grid communication infrastructures : big data, cloud computing, and security / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu.

By: Ye, Feng, 1989- [author.].
Contributor(s): Qian, Yi, 1962- [author.] | Hu, Rose Qingyang [author.] | IEEE Xplore (Online Service) [distributor.] | Wiley [publisher.].
Material type: materialTypeLabelBookPublisher: Hoboken, New Jersey : John Wiley & Sons, 2018Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2018]Description: 1 PDF (304 pages).Content type: text Media type: electronic Carrier type: online resourceISBN: 9781119240136.Subject(s): Smart power grids -- Communication systems | Smart power grids -- Security measuresGenre/Form: Electronic books.DDC classification: 621.31 Online resources: Abstract with links to resource Also available in print.
Contents:
1 Background of the Smart Grid 1 -- 1.1 Motivations and Objectives of the Smart Grid 1 -- 1.1.1 Better Renewable Energy Resource Adaption 2 -- 1.1.2 Grid Operation Efficiency Advancement 3 -- 1.1.3 Grid Reliability and Security Improvement 4 -- 1.2 Smart Grid Communications Architecture 5 -- 1.2.1 Conceptual Domain Model 6 -- 1.2.2 Two-Way Communications Network 7 -- 1.3 Applications and Requirements 9 -- 1.3.1 Demand Response 9 -- 1.3.2 Advanced Metering Infrastructure 10 -- 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 -- 1.3.4 Communication Networks and Cybersecurity 12 -- 1.4 The Rest of the Book 13 -- 2 Smart Grid Communication Infrastructures 15 -- 2.1 An ICT Framework for the Smart Grid 15 -- 2.1.1 Roles and Benefits of an ICT Framework 15 -- 2.1.2 An Overview of the Proposed ICT Framework 16 -- 2.2 Entities in the ICT Framework 18 -- 2.2.1 Internal Data Collectors 18 -- 2.2.2 Control Centers 20 -- 2.2.3 Power Generators 22 -- 2.2.4 External Data Sources 23 -- 2.3 Communication Networks and Technologies 23 -- 2.3.1 Private and Public Networks 23 -- 2.3.2 Communication Technologies 25 -- 2.4 Data Communication Requirements 30 -- 2.4.1 Latency and Bandwidth 31 -- 2.4.2 Interoperability 32 -- 2.4.3 Scalability 32 -- 2.4.4 Security 32 -- 2.5 Summary 33 -- 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 -- 3.1 Overview of the Proposed NAN 35 -- 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 -- 3.1.2 Structure of the Proposed NAN 37 -- 3.2 Preliminaries 38 -- 3.2.1 Charging Rate Estimate 39 -- 3.2.2 Battery-Related Issues 40 -- 3.2.3 Path Loss Model 41 -- 3.3 Problem Formulations and Solutions in the NAN Design 44 -- 3.3.1 The Cost Minimization Problem 44 -- 3.3.2 Optimal Number of Gateways 48 -- 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 -- 3.3.4 Global Uplink Transmission Power Efficiency 54 -- 3.4 Numerical Results 56 -- 3.4.1 Evaluation of the Optimal Number of Gateways 56 -- 3.4.2 Evaluation of the Global Power Efficiency 56.
3.4.3 Evaluation of the Global Uplink Transmission Rates 58 -- 3.4.4 Evaluation of the Global Power Consumption 59 -- 3.4.5 Evaluation of the Minimum Cost Problem 59 -- 3.5 Case Study 63 -- 3.6 Summary 65 -- 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 -- 4.1 Background and RelatedWork 67 -- 4.1.1 Motivations and Background 67 -- 4.1.2 RelatedWork 69 -- 4.2 SystemModel 70 -- 4.3 Preliminaries 71 -- 4.3.1 Mathematical Formulation 72 -- 4.3.2 Energy Efficiency Utility Function 73 -- 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 -- 4.4.1 DGD Level Game 76 -- 4.4.2 BGD Level Game 77 -- 4.5 Analysis of the Proposed Schemes 78 -- 4.5.1 Estimation of B and D 78 -- 4.5.2 Analysis of the Proposed Stackelberg Game 80 -- 4.5.3 Algorithms to Approach NE and SE 84 -- 4.6 Numerical Results 85 -- 4.6.1 Simulation Settings 85 -- 4.6.2 Estimate of D and B 86 -- 4.6.3 Data Rate Reliability Evaluation 87 -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 -- 4.7 Summary 90 -- 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 -- 5.1 Background and RelatedWork 91 -- 5.1.1 Background and Motivation 91 -- 5.1.2 RelatedWork 93 -- 5.2 Network Model 94 -- 5.3 Problem Formulation 96 -- 5.4 Proposed Power Allocation Schemes 99 -- 5.4.1 Minimizing Total Power Usage 100 -- 5.4.2 Maximizing Power Efficiency 101 -- 5.4.3 Uniform Delay 104 -- 5.4.4 Uniform Transmission Rate 104 -- 5.5 Distributed Power Allocation Schemes 105 -- 5.6 Numerical Results and A Case Study 107 -- 5.6.1 Simulation Settings 107 -- 5.6.2 Comparison of the Centralized Schemes 108 -- 5.6.3 Case Study 111 -- 5.7 Summary 113 -- 6 A Real-Time Information-Based Demand-Side Management System 115 -- 6.1 Background and RelatedWork 115 -- 6.1.1 Background 115 -- 6.1.2 RelatedWork 117 -- 6.2 System Model 118 -- 6.2.1 The Demand-Side Power Management System 118 -- 6.2.2 MathematicalModeling 120 -- 6.2.3 Energy Cost and Unit Price 122.
6.3 Centralized DR Approaches 124 -- 6.3.1 Minimize Peak-to-Average Ratio 124 -- 6.3.2 Minimize Total Cost of Power Generation 125 -- 6.4 GameTheoretical Approaches 128 -- 6.4.1 Formulated Game 128 -- 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129 -- 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131 -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 -- 6.5 Precision and Truthfulness of the Proposed DR System 132 -- 6.6 Numerical and Simulation Results 132 -- 6.6.1 Settings 132 -- 6.6.2 Comparison of 1, 2 and GA1 135 -- 6.6.3 Comparison of Different Distributed Approaches 136 -- 6.6.4 The Impact from Energy Storage Unit 141 -- 6.6.5 The Impact from Increasing Renewable Energy 143 -- 6.7 Summary 145 -- 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147 -- 7.1 Background and RelatedWork 147 -- 7.1.1 Background and Overview 147 -- 7.1.2 RelatedWork 149 -- 7.2 System Model 150 -- 7.2.1 Overview of the Studied System 150 -- 7.2.2 Mathematical Formulation 151 -- 7.2.3 Customer Estimation 152 -- 7.3 Load Scheduling Schemes for BESs 154 -- 7.3.1 Constraints for a BES si 154 -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 -- 7.3.4 GameTheoretical Approach 159 -- 7.4 Simulation Analysis and Results 161 -- 7.4.1 Settings for the Simulations 161 -- 7.4.2 Impact of the Proposed DSM on PAR 163 -- 7.4.3 Evaluation of BESs Equipment Settings 164 -- 7.4.3.1 Number of Charging Ports 164 -- 7.4.3.2 Maximum Number of Fully Charged Batteries 164 -- 7.4.3.3 Preparation at the Beginning of Each Day 165 -- 7.4.3.4 Impact on PAR from BESs 166 -- 7.4.4 Evaluations of the GameTheoretical Approach 167 -- 7.5 Summary 169 -- 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 -- 8.1 Background and Motivation 171 -- 8.1.1 Big Data Era 171 -- 8.1.2 The Smart Grid and Big Data 173 -- 8.2 Pricing and Energy Forecasts in Demand Response 174.
8.2.1 An Overview of Pricing and Energy Forecasts 174 -- 8.2.2 A Case Study of Energy Forecasts 176 -- 8.3 Attack Detection 179 -- 8.3.1 An Overview of Attack Detection in the Smart Grid 179 -- 8.3.2 Current Problems and Techniques 180 -- 8.4 Cloud Computing in the Smart Grid 182 -- 8.4.1 Basics of Cloud Computing 182 -- 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 -- 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 -- 8.5 Summary 185 -- 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 -- 9.1 Background and RelatedWork 187 -- 9.1.1 Motivation and Background 187 -- 9.1.2 RelatedWork 189 -- 9.2 Preliminaries 190 -- 9.2.1 Classic Centralized Learning Scheme 190 -- 9.2.2 Supervised LearningModels 191 -- 9.2.2.1 Supervised Regression Learning Model 191 -- 9.2.2.2 Regularization Term 191 -- 9.2.3 Security Model 192 -- 9.3 Secure Data Learning Scheme 193 -- 9.3.1 Data Learning Scheme 193 -- 9.3.2 The Proposed Security Scheme 194 -- 9.3.2.1 Privacy Scheme 194 -- 9.3.2.2 Identity Protection 195 -- 9.3.3 Analysis of the Learning Process 197 -- 9.3.4 Analysis of the Security 197 -- 9.4 Smart Metering Data Set Analysis-A Case Study 198 -- 9.4.1 Smart Grid AMI and Metering Data Set 198 -- 9.4.2 Regression Study 200 -- 9.5 Conclusion and FutureWork 203 -- 10 Security Challenges in the Smart Grid Communication Infrastructure 205 -- 10.1 General Security Challenges 205 -- 10.1.1 Technical Requirements 205 -- 10.1.2 Information Security Domains 207 -- 10.1.3 Standards and interoperability 207 -- 10.2 Logical Security Architecture 207 -- 10.2.1 Key Concepts and Assumptions 207 -- 10.2.2 Logical Interface Categories 209 -- 10.3 Network Security Requirements 210 -- 10.3.1 Utility-Owned Private Networks 210 -- 10.3.2 Public Networks in the Smart Grid 212 -- 10.4 Classification of Attacks 213 -- 10.4.1 Component-Based Attacks 213 -- 10.4.2 Protocol-Based Attacks 214 -- 10.5 Existing Security Solutions 215 -- 10.6 Standardization and Regulation 216.
10.6.1 Commissions and Considerations 217 -- 10.6.2 Selected Standards 217 -- 10.7 Summary 219 -- 11 Security Schemes for AMI Private Networks 221 -- 11.1 Preliminaries 221 -- 11.1.1 Security Services 221 -- 11.1.2 Security Mechanisms 222 -- 11.1.3 Notations of the Keys Used inThis Chapter 223 -- 11.2 Initial Authentication 223 -- 11.2.1 An Overview of the Proposed Authentication Process 223 -- 11.2.1.1 DAP Authentication Process 224 -- 11.2.1.2 Smart Meter Authentication Process 225 -- 11.2.2 The Authentication Handshake Protocol 226 -- 11.2.3 Security Analysis 229 -- 11.3 Proposed Security Protocol in Uplink Transmissions 230 -- 11.3.1 Single-Traffic Uplink Encryption 231 -- 11.3.2 Multiple-Traffic Uplink Encryption 232 -- 11.3.3 Decryption Process in Uplink Transmissions 233 -- 11.3.4 Security Analysis 235 -- 11.4 Proposed Security Protocol in Downlink Transmissions 235 -- 11.4.1 Broadcast Control Message Encryption 236 -- 11.4.2 One-to-One Control Message Encryption 236 -- 11.4.3 Security Analysis 237 -- 11.5 Domain Secrets Update 238 -- 11.5.1 AS Public/Private Keys Update 238 -- 11.5.2 Active Secret Key Update 238 -- 11.5.3 Preshared Secret Key Update 239 -- 11.6 Summary 239 -- 12 Security Schemes for Smart Grid Communications over Public Networks 241 -- 12.1 Overview of the Proposed Security Schemes 241 -- 12.1.1 Background and Motivation 241 -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 -- 12.2 Proposed ID-Based Scheme 244 -- 12.2.1 Preliminaries 244 -- 12.2.2 Identity-Based Signcryption 245 -- 12.2.2.1 Setup 245 -- 12.2.2.2 Keygen 245 -- 12.2.2.3 Signcryption 246 -- 12.2.2.4 Decryption 246 -- 12.2.2.5 Verification 246 -- 12.2.3 Consistency of the Proposed IBSC Scheme 247 -- 12.2.4 Identity-Based Signature 247 -- 12.2.4.1 Signature 248 -- 12.2.4.2 Verification 248 -- 12.2.5 Key Distribution and Symmetrical Cryptography 248 -- 12.3 Single Proxy Signing Rights Delegation 249 -- 12.3.1 Certificate Distribution by the Local Control Center 249.
12.3.2 Signing Rights Delegation by the PKG 250 -- 12.3.3 Single Proxy Signature 250 -- 12.4 Group Proxy Signing Rights Delegation 251 -- 12.4.1 Certificate Distribution 251 -- 12.4.2 Partial Signature 251 -- 12.4.3 Group Signature 251 -- 12.5 Security Analysis of the Proposed Schemes 252 -- 12.5.1 Assumptions for Security Analysis 252 -- 12.5.2 Identity-Based Encryption Security 253 -- 12.5.2.1 Security Model 253 -- 12.5.2.2 Security Analysis 253 -- 12.5.3 Identity-Based Signature Security 255 -- 12.5.3.1 Security Models 255 -- 12.5.3.2 Security Analysis 256 -- 12.6 Performance Analysis of the Proposed Schemes 258 -- 12.6.1 Computational Complexity of the Proposed Schemes 258 -- 12.6.2 Choosing Bilinear Paring Functions 259 -- 12.6.3 Numerical Results 260 -- 12.7 Conclusion 261 -- 13 Open Issues and Possible Future Research Directions 263 -- 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 -- 13.2 Quality-of-Service Framework 263 -- 13.3 Optimal Network Design 264 -- 13.4 Better Involvement of Green Energy 265 -- 13.5 Need for Secure Communication Network Infrastructure 265 -- 13.6 Electrical Vehicles 265 -- Reference 267 -- Index 287.
Summary: A COMPREHENSIVE RESOURCE COVERING ALL THE KEY AREAS OF SMART GRID COMMUNICATION INFRASTRUCTURES Smart grid is a transformational upgrade to the traditional power grid that adds communication capabilities, intelligence and modern control. Smart Grid Communication Infrastructures is a comprehensive guide that addresses communication infrastructures, related applications and other issues related to the smart grid. The text shows how smart grid departs from the traditional power grid technology. Fundamentally, smart grid has advanced communication infrastructures to achieve two-way information exchange between service providers and customers. Grid operations in smart grid have proven to be more efficient and more secure because of the communication infrastructures and modern control. Smart Grid Communication Infrastructures examines and summarizes the recent advances in smart grid communications, big data analytics and network security. The authors – noted experts in the field – review the technologies, applications and issues in smart grid communication infrastructure. This important resource: . Offers a comprehensive review of all areas of smart grid communication infrastructures. Includes an ICT framework for smart grid. Contains a review of self-sustaining wireless neighborhoods that are network designed. Presents design and analysis of a wireless monitoring network for transmission lines in smart grid Written for graduate students, professors, researchers, scientists, practitioners and engineers, Smart Grid Communication Infrastructures is the comprehensive resource that explores all aspects of the topic.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

1 Background of the Smart Grid 1 -- 1.1 Motivations and Objectives of the Smart Grid 1 -- 1.1.1 Better Renewable Energy Resource Adaption 2 -- 1.1.2 Grid Operation Efficiency Advancement 3 -- 1.1.3 Grid Reliability and Security Improvement 4 -- 1.2 Smart Grid Communications Architecture 5 -- 1.2.1 Conceptual Domain Model 6 -- 1.2.2 Two-Way Communications Network 7 -- 1.3 Applications and Requirements 9 -- 1.3.1 Demand Response 9 -- 1.3.2 Advanced Metering Infrastructure 10 -- 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 -- 1.3.4 Communication Networks and Cybersecurity 12 -- 1.4 The Rest of the Book 13 -- 2 Smart Grid Communication Infrastructures 15 -- 2.1 An ICT Framework for the Smart Grid 15 -- 2.1.1 Roles and Benefits of an ICT Framework 15 -- 2.1.2 An Overview of the Proposed ICT Framework 16 -- 2.2 Entities in the ICT Framework 18 -- 2.2.1 Internal Data Collectors 18 -- 2.2.2 Control Centers 20 -- 2.2.3 Power Generators 22 -- 2.2.4 External Data Sources 23 -- 2.3 Communication Networks and Technologies 23 -- 2.3.1 Private and Public Networks 23 -- 2.3.2 Communication Technologies 25 -- 2.4 Data Communication Requirements 30 -- 2.4.1 Latency and Bandwidth 31 -- 2.4.2 Interoperability 32 -- 2.4.3 Scalability 32 -- 2.4.4 Security 32 -- 2.5 Summary 33 -- 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 -- 3.1 Overview of the Proposed NAN 35 -- 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 -- 3.1.2 Structure of the Proposed NAN 37 -- 3.2 Preliminaries 38 -- 3.2.1 Charging Rate Estimate 39 -- 3.2.2 Battery-Related Issues 40 -- 3.2.3 Path Loss Model 41 -- 3.3 Problem Formulations and Solutions in the NAN Design 44 -- 3.3.1 The Cost Minimization Problem 44 -- 3.3.2 Optimal Number of Gateways 48 -- 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 -- 3.3.4 Global Uplink Transmission Power Efficiency 54 -- 3.4 Numerical Results 56 -- 3.4.1 Evaluation of the Optimal Number of Gateways 56 -- 3.4.2 Evaluation of the Global Power Efficiency 56.

3.4.3 Evaluation of the Global Uplink Transmission Rates 58 -- 3.4.4 Evaluation of the Global Power Consumption 59 -- 3.4.5 Evaluation of the Minimum Cost Problem 59 -- 3.5 Case Study 63 -- 3.6 Summary 65 -- 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 -- 4.1 Background and RelatedWork 67 -- 4.1.1 Motivations and Background 67 -- 4.1.2 RelatedWork 69 -- 4.2 SystemModel 70 -- 4.3 Preliminaries 71 -- 4.3.1 Mathematical Formulation 72 -- 4.3.2 Energy Efficiency Utility Function 73 -- 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 -- 4.4.1 DGD Level Game 76 -- 4.4.2 BGD Level Game 77 -- 4.5 Analysis of the Proposed Schemes 78 -- 4.5.1 Estimation of B and D 78 -- 4.5.2 Analysis of the Proposed Stackelberg Game 80 -- 4.5.3 Algorithms to Approach NE and SE 84 -- 4.6 Numerical Results 85 -- 4.6.1 Simulation Settings 85 -- 4.6.2 Estimate of D and B 86 -- 4.6.3 Data Rate Reliability Evaluation 87 -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 -- 4.7 Summary 90 -- 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 -- 5.1 Background and RelatedWork 91 -- 5.1.1 Background and Motivation 91 -- 5.1.2 RelatedWork 93 -- 5.2 Network Model 94 -- 5.3 Problem Formulation 96 -- 5.4 Proposed Power Allocation Schemes 99 -- 5.4.1 Minimizing Total Power Usage 100 -- 5.4.2 Maximizing Power Efficiency 101 -- 5.4.3 Uniform Delay 104 -- 5.4.4 Uniform Transmission Rate 104 -- 5.5 Distributed Power Allocation Schemes 105 -- 5.6 Numerical Results and A Case Study 107 -- 5.6.1 Simulation Settings 107 -- 5.6.2 Comparison of the Centralized Schemes 108 -- 5.6.3 Case Study 111 -- 5.7 Summary 113 -- 6 A Real-Time Information-Based Demand-Side Management System 115 -- 6.1 Background and RelatedWork 115 -- 6.1.1 Background 115 -- 6.1.2 RelatedWork 117 -- 6.2 System Model 118 -- 6.2.1 The Demand-Side Power Management System 118 -- 6.2.2 MathematicalModeling 120 -- 6.2.3 Energy Cost and Unit Price 122.

6.3 Centralized DR Approaches 124 -- 6.3.1 Minimize Peak-to-Average Ratio 124 -- 6.3.2 Minimize Total Cost of Power Generation 125 -- 6.4 GameTheoretical Approaches 128 -- 6.4.1 Formulated Game 128 -- 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129 -- 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131 -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 -- 6.5 Precision and Truthfulness of the Proposed DR System 132 -- 6.6 Numerical and Simulation Results 132 -- 6.6.1 Settings 132 -- 6.6.2 Comparison of 1, 2 and GA1 135 -- 6.6.3 Comparison of Different Distributed Approaches 136 -- 6.6.4 The Impact from Energy Storage Unit 141 -- 6.6.5 The Impact from Increasing Renewable Energy 143 -- 6.7 Summary 145 -- 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147 -- 7.1 Background and RelatedWork 147 -- 7.1.1 Background and Overview 147 -- 7.1.2 RelatedWork 149 -- 7.2 System Model 150 -- 7.2.1 Overview of the Studied System 150 -- 7.2.2 Mathematical Formulation 151 -- 7.2.3 Customer Estimation 152 -- 7.3 Load Scheduling Schemes for BESs 154 -- 7.3.1 Constraints for a BES si 154 -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 -- 7.3.4 GameTheoretical Approach 159 -- 7.4 Simulation Analysis and Results 161 -- 7.4.1 Settings for the Simulations 161 -- 7.4.2 Impact of the Proposed DSM on PAR 163 -- 7.4.3 Evaluation of BESs Equipment Settings 164 -- 7.4.3.1 Number of Charging Ports 164 -- 7.4.3.2 Maximum Number of Fully Charged Batteries 164 -- 7.4.3.3 Preparation at the Beginning of Each Day 165 -- 7.4.3.4 Impact on PAR from BESs 166 -- 7.4.4 Evaluations of the GameTheoretical Approach 167 -- 7.5 Summary 169 -- 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 -- 8.1 Background and Motivation 171 -- 8.1.1 Big Data Era 171 -- 8.1.2 The Smart Grid and Big Data 173 -- 8.2 Pricing and Energy Forecasts in Demand Response 174.

8.2.1 An Overview of Pricing and Energy Forecasts 174 -- 8.2.2 A Case Study of Energy Forecasts 176 -- 8.3 Attack Detection 179 -- 8.3.1 An Overview of Attack Detection in the Smart Grid 179 -- 8.3.2 Current Problems and Techniques 180 -- 8.4 Cloud Computing in the Smart Grid 182 -- 8.4.1 Basics of Cloud Computing 182 -- 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 -- 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 -- 8.5 Summary 185 -- 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 -- 9.1 Background and RelatedWork 187 -- 9.1.1 Motivation and Background 187 -- 9.1.2 RelatedWork 189 -- 9.2 Preliminaries 190 -- 9.2.1 Classic Centralized Learning Scheme 190 -- 9.2.2 Supervised LearningModels 191 -- 9.2.2.1 Supervised Regression Learning Model 191 -- 9.2.2.2 Regularization Term 191 -- 9.2.3 Security Model 192 -- 9.3 Secure Data Learning Scheme 193 -- 9.3.1 Data Learning Scheme 193 -- 9.3.2 The Proposed Security Scheme 194 -- 9.3.2.1 Privacy Scheme 194 -- 9.3.2.2 Identity Protection 195 -- 9.3.3 Analysis of the Learning Process 197 -- 9.3.4 Analysis of the Security 197 -- 9.4 Smart Metering Data Set Analysis-A Case Study 198 -- 9.4.1 Smart Grid AMI and Metering Data Set 198 -- 9.4.2 Regression Study 200 -- 9.5 Conclusion and FutureWork 203 -- 10 Security Challenges in the Smart Grid Communication Infrastructure 205 -- 10.1 General Security Challenges 205 -- 10.1.1 Technical Requirements 205 -- 10.1.2 Information Security Domains 207 -- 10.1.3 Standards and interoperability 207 -- 10.2 Logical Security Architecture 207 -- 10.2.1 Key Concepts and Assumptions 207 -- 10.2.2 Logical Interface Categories 209 -- 10.3 Network Security Requirements 210 -- 10.3.1 Utility-Owned Private Networks 210 -- 10.3.2 Public Networks in the Smart Grid 212 -- 10.4 Classification of Attacks 213 -- 10.4.1 Component-Based Attacks 213 -- 10.4.2 Protocol-Based Attacks 214 -- 10.5 Existing Security Solutions 215 -- 10.6 Standardization and Regulation 216.

10.6.1 Commissions and Considerations 217 -- 10.6.2 Selected Standards 217 -- 10.7 Summary 219 -- 11 Security Schemes for AMI Private Networks 221 -- 11.1 Preliminaries 221 -- 11.1.1 Security Services 221 -- 11.1.2 Security Mechanisms 222 -- 11.1.3 Notations of the Keys Used inThis Chapter 223 -- 11.2 Initial Authentication 223 -- 11.2.1 An Overview of the Proposed Authentication Process 223 -- 11.2.1.1 DAP Authentication Process 224 -- 11.2.1.2 Smart Meter Authentication Process 225 -- 11.2.2 The Authentication Handshake Protocol 226 -- 11.2.3 Security Analysis 229 -- 11.3 Proposed Security Protocol in Uplink Transmissions 230 -- 11.3.1 Single-Traffic Uplink Encryption 231 -- 11.3.2 Multiple-Traffic Uplink Encryption 232 -- 11.3.3 Decryption Process in Uplink Transmissions 233 -- 11.3.4 Security Analysis 235 -- 11.4 Proposed Security Protocol in Downlink Transmissions 235 -- 11.4.1 Broadcast Control Message Encryption 236 -- 11.4.2 One-to-One Control Message Encryption 236 -- 11.4.3 Security Analysis 237 -- 11.5 Domain Secrets Update 238 -- 11.5.1 AS Public/Private Keys Update 238 -- 11.5.2 Active Secret Key Update 238 -- 11.5.3 Preshared Secret Key Update 239 -- 11.6 Summary 239 -- 12 Security Schemes for Smart Grid Communications over Public Networks 241 -- 12.1 Overview of the Proposed Security Schemes 241 -- 12.1.1 Background and Motivation 241 -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 -- 12.2 Proposed ID-Based Scheme 244 -- 12.2.1 Preliminaries 244 -- 12.2.2 Identity-Based Signcryption 245 -- 12.2.2.1 Setup 245 -- 12.2.2.2 Keygen 245 -- 12.2.2.3 Signcryption 246 -- 12.2.2.4 Decryption 246 -- 12.2.2.5 Verification 246 -- 12.2.3 Consistency of the Proposed IBSC Scheme 247 -- 12.2.4 Identity-Based Signature 247 -- 12.2.4.1 Signature 248 -- 12.2.4.2 Verification 248 -- 12.2.5 Key Distribution and Symmetrical Cryptography 248 -- 12.3 Single Proxy Signing Rights Delegation 249 -- 12.3.1 Certificate Distribution by the Local Control Center 249.

12.3.2 Signing Rights Delegation by the PKG 250 -- 12.3.3 Single Proxy Signature 250 -- 12.4 Group Proxy Signing Rights Delegation 251 -- 12.4.1 Certificate Distribution 251 -- 12.4.2 Partial Signature 251 -- 12.4.3 Group Signature 251 -- 12.5 Security Analysis of the Proposed Schemes 252 -- 12.5.1 Assumptions for Security Analysis 252 -- 12.5.2 Identity-Based Encryption Security 253 -- 12.5.2.1 Security Model 253 -- 12.5.2.2 Security Analysis 253 -- 12.5.3 Identity-Based Signature Security 255 -- 12.5.3.1 Security Models 255 -- 12.5.3.2 Security Analysis 256 -- 12.6 Performance Analysis of the Proposed Schemes 258 -- 12.6.1 Computational Complexity of the Proposed Schemes 258 -- 12.6.2 Choosing Bilinear Paring Functions 259 -- 12.6.3 Numerical Results 260 -- 12.7 Conclusion 261 -- 13 Open Issues and Possible Future Research Directions 263 -- 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 -- 13.2 Quality-of-Service Framework 263 -- 13.3 Optimal Network Design 264 -- 13.4 Better Involvement of Green Energy 265 -- 13.5 Need for Secure Communication Network Infrastructure 265 -- 13.6 Electrical Vehicles 265 -- Reference 267 -- Index 287.

Restricted to subscribers or individual electronic text purchasers.

A COMPREHENSIVE RESOURCE COVERING ALL THE KEY AREAS OF SMART GRID COMMUNICATION INFRASTRUCTURES Smart grid is a transformational upgrade to the traditional power grid that adds communication capabilities, intelligence and modern control. Smart Grid Communication Infrastructures is a comprehensive guide that addresses communication infrastructures, related applications and other issues related to the smart grid. The text shows how smart grid departs from the traditional power grid technology. Fundamentally, smart grid has advanced communication infrastructures to achieve two-way information exchange between service providers and customers. Grid operations in smart grid have proven to be more efficient and more secure because of the communication infrastructures and modern control. Smart Grid Communication Infrastructures examines and summarizes the recent advances in smart grid communications, big data analytics and network security. The authors – noted experts in the field – review the technologies, applications and issues in smart grid communication infrastructure. This important resource: . Offers a comprehensive review of all areas of smart grid communication infrastructures. Includes an ICT framework for smart grid. Contains a review of self-sustaining wireless neighborhoods that are network designed. Presents design and analysis of a wireless monitoring network for transmission lines in smart grid Written for graduate students, professors, researchers, scientists, practitioners and engineers, Smart Grid Communication Infrastructures is the comprehensive resource that explores all aspects of the topic.

Also available in print.

Mode of access: World Wide Web

Description based on print version record and CIP data provided by publisher; resource not viewed.

There are no comments for this item.

Log in to your account to post a comment.

International Institute of Information Technology, Bangalore
26/C, Electronics City, Hosur Road,Bengaluru-560100 Contact Us
Koha & OPAC at IIITB deployed by Bhargav Sridhar & Team.

Powered by Koha