000 03805nam a2200589 i 4500
001 6963191
003 IEEE
005 20190220121651.0
006 m o d
007 cr |n|||||||||
008 151223s2014 maua ob 001 eng d
010 _z 2014003812 (print)
020 _a9780262325325
_qelectronic
020 _z9780262027724
_qhardcover
035 _a(CaBNVSL)mat06963191
035 _a(IDAMS)0b0000648284f7e4
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTA342.P73 2014eb
082 0 0 _a003/.74
_223
245 0 0 _aPractical applications of sparse modeling /
_cedited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil.
264 1 _aCambridge, Massachusetts :
_bMIT Press,
_c[2014]
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2014]
300 _a1 PDF (xii, 249 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aNeural information processing series
504 _aIncludes bibliographical references and index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aSparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models.ContributorsA. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, R�mi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aTitle from PDF.
588 _aDescription based on PDF viewed 12/23/2015.
650 0 _aSparse matrices.
650 0 _aData reduction.
650 0 _aSampling (Statistics)
650 0 _aMathematical models.
655 0 _aElectronic books.
695 _aEpitaxial layers
695 _aExcitons
695 _aNitrogen
695 _aRadiative recombination
695 _aSilicon carbide
695 _aTemperature measurement
700 1 _aRish, Irina,
_d1969-,
_eeditor.
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aMIT Press,
_epublisher.
776 0 8 _iPrint version
_z9780262027724
830 0 _aNeural information processing series.
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6963191
999 _c39654
_d39654