000 | 03805nam a2200589 i 4500 | ||
---|---|---|---|
001 | 6963191 | ||
003 | IEEE | ||
005 | 20190220121651.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 151223s2014 maua ob 001 eng d | ||
010 | _z 2014003812 (print) | ||
020 |
_a9780262325325 _qelectronic |
||
020 |
_z9780262027724 _qhardcover |
||
035 | _a(CaBNVSL)mat06963191 | ||
035 | _a(IDAMS)0b0000648284f7e4 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 | _aTA342.P73 2014eb | |
082 | 0 | 0 |
_a003/.74 _223 |
245 | 0 | 0 |
_aPractical applications of sparse modeling / _cedited by Irina Rish, Guillermo A. Cecchi, Aurelie Lozano, and Alexandru Niculescu-Mizil. |
264 | 1 |
_aCambridge, Massachusetts : _bMIT Press, _c[2014] |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2014] |
|
300 |
_a1 PDF (xii, 249 pages) : _billustrations. |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 | _aNeural information processing series | |
504 | _aIncludes bibliographical references and index. | ||
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
520 | _aSparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models.ContributorsA. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, R�mi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aTitle from PDF. | ||
588 | _aDescription based on PDF viewed 12/23/2015. | ||
650 | 0 | _aSparse matrices. | |
650 | 0 | _aData reduction. | |
650 | 0 | _aSampling (Statistics) | |
650 | 0 | _aMathematical models. | |
655 | 0 | _aElectronic books. | |
695 | _aEpitaxial layers | ||
695 | _aExcitons | ||
695 | _aNitrogen | ||
695 | _aRadiative recombination | ||
695 | _aSilicon carbide | ||
695 | _aTemperature measurement | ||
700 | 1 |
_aRish, Irina, _d1969-, _eeditor. |
|
710 | 2 |
_aIEEE Xplore (Online Service), _edistributor. |
|
710 | 2 |
_aMIT Press, _epublisher. |
|
776 | 0 | 8 |
_iPrint version _z9780262027724 |
830 | 0 | _aNeural information processing series. | |
856 | 4 | 2 |
_3Abstract with links to resource _uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6963191 |
999 |
_c39654 _d39654 |