000 10384nam a2201129 i 4500
001 5201456
003 IEEE
005 20191218152111.0
006 m o d
007 cr |n|||||||||
008 070326t20152007caua ob 001 0 eng d
020 _a9780470079812
_qelectronic
020 _z9780470074763
_qpaper
020 _z0470079819
_qelectronic
024 7 _a10.1002/0470079819
_2doi
035 _a(CaBNVSL)mat05201456
035 _a(IDAMS)0b0000648104a905
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK6580
_b.M69 2007eb
082 0 4 _a621.36/78
_222
100 1 _aMott, Harold.
_eauthor.
245 1 0 _aRemote sensing with polarimetric radar /
_cHarold Mott.
264 1 _a[Los Alamitos, CA] :
_bIEEE Press,
_c2007.
300 _a1 PDF (xvi, 309 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aPREFACE. -- ACKNOWLEDGMENTS. -- 1. ELECTROMAGNETIC WAVES. -- 1.1. The Time-Invariant Maxwell Equations. -- 1.2. The Electromagnetic Traveling Wave. -- 1.3. Power Density. -- 1.4. The Polarization Ellipse. -- 1.5. Polarization Vector and Polarization Ratio. -- 1.6. Circular Wave Components. -- 1.7. Change of Polarization Basis. -- 1.8. Ellipse Characteristics in Terms of P and Q. -- 1.9. Coherency and Stokes Vectors. -- 1.10. The Poincare Sphere. -- References. -- Problems. -- 2. ANTENNAS. -- 2.1. Elements of the Antenna System. -- 2.2. The Vector Potentials. -- 2.3. Solutions for the Vector Potentials. -- 2.4. Far-Zone Fields. -- 2.5. Radiation Pattern. -- 2.6. Gain and Directivity. -- 2.7. The Receiving Antenna. -- 2.8. Transmission Between Antennas. -- 2.9. Antenna Arrays. -- 2.10. Effective Length of an Antenna. -- 2.11. Reception of Completely Polarized Waves. -- 2.12. Gain, Effective Area, and Radiation Resistance. -- 2.13. Maximum Received Power. -- 2.14. Polarization Efficiency. -- 2.15. The Modified Friis Transmission Equation. -- 2.16. Alignment of Antennas. -- References. -- Problems. -- 3. COHERENTLY SCATTERING TARGETS. -- 3.1. Radar Targets. -- 3.2. The Jones Matrix. -- 3.3. The Sinclair Matrix. -- 3.4. Matrices With Relative Phase. -- 3.5. FSA-BSA Conventions. -- 3.6. Relationship Between Jones and Sinclair Matrices. -- 3.7. Scattering with Circular Wave Components. -- 3.8. Backscattering. -- 3.9. Polarization Ratio of the Scattered Wave. -- 3.10. Change of Polarization Basis: The Scattering Matrix. -- 3.11. Polarizations for Maximum and Minimum Power. -- 3.12. The Polarization Fork. -- 3.13. Nonaligned Coordinate Systems. -- 3.14. Determination of Scattering Parameters. -- References. -- Problems. -- 4. AN INTRODUCTION TO RADAR. -- 4.1. Pulse Radar. -- 4.2. CW Radar. -- 4.3. Directional Properties of Radar Measurements. -- 4.4. Resolution. -- 4.5. Imaging Radar. -- 4.6. The Traditional Radar Equation. -- 4.7. The Polarimetric Radar Equation. -- 4.8. A Polarimetric Radar.
505 8 _a4.9. Noise. -- References. -- Problems. -- 5. SYNTHETIC APERTURE RADAR. -- 5.1. Creating a Terrain Map. -- 5.2. Range Resolution. -- 5.3. Azimuth Resolution. -- 5.4. Geometric Factors. -- 5.5. Polarimetric SAR. -- 5.6. SAR Errors. -- 5.7. Height Measurement. -- 5.8. Polarimetric Interferometry. -- 5.9. Phase Unwrapping. -- References. -- Problems. -- 6. PARTIALLY POLARIZED WAVES. -- 6.1. Representation of the Fields. -- 6.2. Representation of Partially Polarized Waves. -- 6.3. Reception of Partially Polarized Waves. -- References. -- Problems. -- 7. SCATTERING BY DEPOLARIZING TARGETS. -- 7.1. Targets. -- 7.2. Averaging the Sinclair Matrix. -- 7.3. The Kronecker-Product Matrices. -- 7.4. Matrices for a Depolarizing Target: Coherent Measurement. -- 7.5. Incoherently Measured Target Matrices. -- 7.6. Matrix Properties and Relationships. -- 7.7. Modified Matrices. -- 7.8. Names. -- 7.9. Additional Target Information. -- 7.10. Target Covariance and Coherency Matrices. -- 7.11. A Scattering Matrix with Circular Components. -- 7.12. The Graves Power Density Matrix. -- 7.13. Measurement Considerations. -- 7.14. Degree of Polarization and Polarimetric Entropy. -- 7.15. Variance of Power. -- 7.16. Summary of Power Equations and Matrix Relationships. -- References. -- Problems. -- 8. OPTIMAL POLARIZATIONS FOR RADAR. -- 8.1. Antenna Selection Criteria. -- 8.2. Lagrange Multipliers. -- A. COHERENTLY SCATTERING TARGETS. -- 8.3. Maximum Power. -- 8.4. Power Contrast: Backscattering. -- B. DEPOLARIZING TARGETS. -- 8.5. Iterative Procedure for Maximizing Power Contrast. -- 8.6. The Backscattering Covariance Matrix. -- 8.7. The Bistatic Covariance Matrix. -- 8.8. Maximizing Power Contrast by Matrix Decomposition. -- 8.9. Optimization with the Graves Matrix. -- References. -- Problems. -- 9. CLASSIFICATION OF TARGETS. -- A. CLASSIFICATION CONCEPTS. -- 9.1. Representation and Classification of Targets. -- 9.2. Bayes Decision Rule. -- 9.3. The Neyman-Pearson Decision Rule. -- 9.4. Bayes Error Bounds.
505 8 _a9.5. Estimation of Parameters from Data. -- 9.6. Nonparametric Classification. -- B. CLASSIFICATION BY MATRIX DECOMPOSITION. -- 9.7. Coherent Decomposition. -- 9.8. Decomposition of Power-Type Matrices. -- C. REMOVAL OF UNPOLARIZED SCATTERING. -- 9.9. Decomposition of the D Matrix. -- 9.10. Polarized Clutter. -- 9.11. A Similar Decomposition. -- 9.12. Polarimetric Similarity Classification. -- References. -- Problems. -- APPENDIX A. FADING AND SPECKLE. -- Reference. -- APPENDIX B. PROBABILITY AND RANDOM PROCESSES. -- B.1. Probability. -- B.2. Random Variables. -- B.3. Random Vectors. -- B.4. Probability Density Functions in Remote Sensing. -- B.5. Random Processes. -- References. -- APPENDIX C. THE KENNAUGH MATRIX. -- APPENDIX D. BAYES ERROR BOUNDS. -- References. -- INDEX.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aDiscover the principles and techniques of remote sensing with polarimetric radar This book presents the principles central to understanding polarized wave transmission, scattering, and reception in communication systems and polarimetric and non-polarimetric radar. Readers gain new insight into the methods for remotely gathering data about the earth's surface and atmosphere with polarimetric synthetic-aperture radar and polarimetric interferometry, including the changes that take place with seasons, floods, earthquakes, and other natural phenomena. In particular, with the book's focus on polarimetric radars, readers discover how to exploit the many special features of these systems, which provide the maximum amount of information that can be obtained remotely with radar. Introductory-level coverage of electromagnetic wave propagation, antennas, radar and synthetic aperture radar, probability and random processes, and radar interferometry serves as a foundation for advancing to more complex material. A more advanced mathematical and technical treatment enables readers to fully grasp polarized wave transmission, propagation, and reception in communication systems and polarimetric-radar remote sensing. Readers will discover much new material in this text, including: . Distinguishing between coherently-measured and incoherently-measured target matrices for power, recognizing that the two matrix types are not equivalent in representing targets. Removing unpolarized components from the scattered wave and deriving a target matrix for classification from the resulting coherently-scattered wave. Selecting an antenna polarization to maximize the contrast between desired and undesired depolarizing targets Problems ranging in complexity from introductory to challenging are presented throughout the text. Engineers will find this an ideal reference to help them fully utilize the powerful capabilities of polarimetric radar. It will also help agronomists, geographers, meteorologists, and other scientists who use remotely obtained data about the earth to evaluate procedures and better interpret the data. The book can also be tailored to both undergraduate and graduate courses in remote sensing, and recommendations are given for text material suitable for such courses.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
588 _aDescription based on PDF viewed 12/18/2015.
650 0 _aRadar.
650 0 _aRemote sensing.
650 0 _aRadio waves
_xPolarization.
655 0 _aElectronic books.
695 _aAntenna measurements
695 _aAntenna theory
695 _aArrays
695 _aBackscatter
695 _aBandwidth
695 _aBrightness
695 _aClutter
695 _aCurrent
695 _aDensity functional theory
695 _aDirective antennas
695 _aDoppler effect
695 _aDoppler radar
695 _aElectric potential
695 _aElectromagnetic scattering
695 _aElectromagnetics
695 _aEnergy measurement
695 _aEquations
695 _aError probability
695 _aEuclidean distance
695 _aFading
695 _aFrequency measurement
695 _aImpedance
695 _aIndexes
695 _aJoints
695 _aLogic gates
695 _aMaxwell equations
695 _aNoise
695 _aObservers
695 _aPixel
695 _aPower measurement
695 _aPresses
695 _aPulse measurements
695 _aRadar antennas
695 _aRadar imaging
695 _aRadar measurements
695 _aRadar polarimetry
695 _aRadar remote sensing
695 _aRadar scattering
695 _aRandom processes
695 _aRandom variables
695 _aReceivers
695 _aReceiving antennas
695 _aRemote sensing
695 _aScattering
695 _aSignal representations
695 _aSpaceborne radar
695 _aSpeckle
695 _aSurface waves
695 _aSynthetic aperture radar
695 _aTransforms
695 _aTransmitting antennas
695 _aUpper bound
695 _aVoltage measurement
710 2 _aIEEE Xplore (Online service),
_edistributor.
776 0 8 _iPrint version:
_z9780470074763
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5201456
999 _c41836
_d41836