000 08078nam a2201093 i 4500
001 5236646
003 IEEE
005 20191218152113.0
006 m o d
007 cr |n|||||||||
008 090527t20152009njua ob 001 0 eng d
020 _a9780470385906
_qelectronic
020 _z9780470050743
_qpaper
020 _z0470385901
_qelectronic
024 7 _a10.1002/9780470385906
_2doi
035 _a(CaBNVSL)mat05236646
035 _a(IDAMS)0b00006481094cf4
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK7876
_b.S759 2009eb
082 0 4 _a621.381/32
_222
100 1 _aSu�arez, Almudena.
_eauthor.
245 1 0 _aAnalysis and design of autonomous microwave circuits /
_cAlmudena Su�arez.
264 1 _aHoboken, New Jersey :
_bWiley,
_cc2009.
264 1 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c2008.
300 _a1 PDF (xx, 703 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aWiley series in microwave and optical engineering ;
_v19
504 _aIncludes bibliographical references and index.
505 0 _aPreface -- 1. Oscillator Dynamics -- 1.1. Introduction -- 1.2. Operational Principle of Free-Running Oscillators -- 1.3. Impedance-Admittance Analysis of an Oscillator -- 1.4. Frequency-Domain Formulation of an Oscillator Circuit -- 1.5. Oscillator Dynamics -- 1.6. Phase Noise -- 2. Phase Noise -- 2.1. Introduction -- 2.2. Random Variable and random Processes -- 2.3. Noise Sources in Electronic Circuits -- 2.4. Derivation of the Oscillator Noise Spectrum Using Time-Domain Analysis -- 2.5. Frequency-Domain Analysis of a Noisy Oscillator -- 3. Bifurcation Analysis -- 3.1. Introduction -- 3.2. Representation of Solutions -- 3.3. Bifurcations -- 4. Injected Oscillators and Frequency Dividers -- 4.1. Introduction -- 4.2. Injection-Locked Oscillators -- 4.3. Frequency Dividers -- 4.4. Subharmonically and Ultrasubharmonically Injection-Locked Oscillators -- 4.5. Self-Oscillating Mixers -- 5. Nonlinear Circuit Simulation -- 5.1. Introduction -- 5.2. Time-Domain Integration -- 5.3. Fast Time-Domain Techniques -- 5.4. Harmonic Balance -- 5.5. Harmonic Balance Analysis of Autonomous and Synchronized Circuit -- 5.6. Envelope Transient -- 5.7. Conversion Matrix Approach -- 6. Stability Analysis Using Harmonic Balance -- 6.1. Introduction -- 6.2. Local Stability Analysis -- 6.3. Stability Analysis of Free-Running Oscillators -- 6.4. Solution Curves Versus a Circuit Parameter -- 6.5.Global Stability Analysis -- 6.6. Bifurcation Synthesis and Control -- 7. Noise Analysis Using Harmonic Balance -- 7.1. Introduction -- 7.2. Noise in Semiconductor Devices -- 7.3. Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System -- 7.4. Coupled Phase and Amplitude Noise Calculation -- 7.5. Carrier Modulation Approach -- 7.6. Conversion Matrix Approach -- 7.7. Noise in Synchronized Oscillators -- 8. Harmonic Balance Techniques for Oscillator Design -- 8.1. Introduction -- 8.2. Oscillator Synthesis -- 8.3. Design of Voltage-Controlled Oscillators
505 0 _a8.4. Maximization of Oscillator Efficiency -- 8.5. Control of Oscillator Transients -- 8.6. Phase Noise Reduction -- 9. Stabilization Techniques for Phase Noise Reduction -- 9.1. Introduction -- 9.2. Self-Injection Topology -- 9.3. Use of High-Q Resonators -- 9.4. Stabilization Loop -- 9.5. Transistor-Based Oscillators -- 10. Coupled-Oscillator Systems -- 10.1. Introduction -- 10.2. Oscillator Systems with Global Coupling -- 10.3. Coupled-Oscillator Systems for Beam Steering -- 11. Simulation Techniques for Frequency-Divider Design -- 11.1. Introduction -- 11.2. Types of frequency dividers -- 11.3. Design of Transistor-Based Regenerative Frequency Dividers -- 11.4. Design of Harmonic Injection Dividers -- 11.5. Extension of the Techniques to Subharmonic Injection Oscillators -- 12. Circuit Stabilization -- 12.1. Introduction -- 12.2. Unstable Class AB Amplifier Using Power Combiners -- 12.3. Unstable Class E/F Amplifier -- 12.4. Unstable Class E Amplifier -- 12.5. Stabilization of Oscillator Circuits -- 12.6. Stabilization of Multifunction MMIC Chips -- Index
506 1 _aRestricted to subscribers or individual electronic text purchasers
520 _aPresents simulation techniques that substantially increase designers' control over the oscillationin autonomous circuits This book facilitates a sound understanding of the free-running oscillation mechanism, the start-up from the noise level, and the establishment of the steady-state oscillation. It deals with the operation principles and main characteristics of free-running and injection-locked oscillators, coupled oscillators, and parametric frequency dividers. Analysis and Design of Autonomous Microwave Circuits provides: . An exploration of the main nonlinear-analysis methods, with emphasis on harmonic balance and envelope transient methods. Techniques for the efficient simulation of the most common autonomous regimes. A presentation and comparison of the main stability-analysis methods in the frequency domain. A detailed examination of the instabilization mechanisms that delimit the operation bands of autonomous circuits. Coverage of techniques used to eliminate common types of undesired behavior, such as spurious oscillations, hysteresis, and chaos. A thorough presentation of the oscillator phase noise. A comparison of the main methodologies of phase-noise analysis. Techniques for autonomous circuit optimization, based on harmonic balance. A consideration of different design objectives: presetting the oscillation frequency and output power, increasing efficiency, modifying the transient duration, and imposing operation bands Analysis and Design of Autonomous Microwave Circuits is a valuable resource for microwave designers, oscillator designers, and graduate students in RF microwave design
530 _aAlso available in print
538 _aMode of access: World Wide We
588 _aDescription based on PDF viewed 12/21/2015
650 0 _aMicrowave circuits
_xMathematical models
650 0 _aOscillators, Microwave
_xDesign and construction
650 0 _aOscillators, Microwave
_xAutomatic control
650 0 _aSystem analysis
655 0 _aElectronic books
695 _aAdmittanc
695 _aAdvertisin
695 _aArray
695 _aBeam steerin
695 _aBifurcatio
695 _aBook
695 _aCapacitanc
695 _aCapacitor
695 _aCircuit stabilit
695 _aCirculator
695 _aCoupling
695 _aEigenvalues and eigenfunction
695 _aFrequency conversio
695 _aFrequency modulatio
695 _aFrequency synchronizatio
695 _aGenerator
695 _aHarmonic analysi
695 _aImpedanc
695 _aIndexe
695 _aInductor
695 _aIntegrated circuit modelin
695 _aLogic gate
695 _aMixer
695 _aNonlinear circuit
695 _aNumerical model
695 _aOscillator
695 _aPhase nois
695 _aProbability density functio
695 _aProbability distribution
695 _aRandom variables
695 _aResistance
695 _aResonant frequency
695 _aScattering
695 _aSections
695 _aStability analysis
695 _aStability criteria
695 _aSteady-state
695 _aSynchronization
695 _aThermal noise
695 _aTime domain analysis
695 _aTopology
695 _aTrajector
695 _aTransfer function
695 _aTransient analysis
695 _aTransistors
695 _aVectors
710 2 _aJohn Wiley & Sons
_epublisher.
710 2 _aIEEE Xplore (Online service),
_edistributor.
776 0 _iPrint version:
_z978047005074
830 0 _aWiley series in microwave and optical engineering ;
_v19
856 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236646
999 _c41913
_d41913