000 12256nam a2201669 i 4500
001 5271147
003 IEEE
005 20191218152117.0
006 m o d
007 cr |n|||||||||
008 100317t20152003njua ob 001 0 eng d
020 _a9780470544297
_qelectronic
020 _z9780471274544
_qprint
020 _z0470544295
_qelectronic
024 7 _a10.1109/9780470544297
_2doi
035 _a(CaBNVSL)mat05271147
035 _a(IDAMS)0b000064810cc8b1
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQ342
_b.C666 2003eb
082 0 4 _a006.3
_222
245 0 0 _aComputational intelligence :
_bthe experts speak /
_cedited by David B. Fogel, Charles J. Robinson.
264 1 _aPiscataway, New Jersey :
_bIEEE Press,
_cc2003.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2003]
300 _a1 PDF (xviii, 282 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aCONTRIBUTORS -- PREFACE -- 1. THREE GENERATIONS OF COEVOLUTIONARY ROBOTICS (Jordan B. Pollack, Hod Lipson, Pablo Funes, and Gregory Hornby) -- 1.1 Roboeconomics -- 1.2 Coevolution -- 1.3 Research Thrusts -- 1.4 Conclusion -- Acknowledgments -- References -- 2. BEYOND 2001: THE LINGUISTIC SPATIAL ODYSSEY (James M. Keller, Pascal Matsakis, and Marjorie Skubic) -- 2.1 Introduction -- 2.2 Force Histograms and Linguistic Scene Description -- 2.3 Scene Matching -- 2.4 Human-Robot Dialog -- 2.5 Sketched Route Map Understanding -- 2.6 The Future -- Acknowledgments -- References -- 3. COMPUTING MACHINERY AND INTELLIGENCE AMPLIFICATION (Steven K. Rogers, Matthew Kabrisky, Kenneth Bauer, and Mark E. Oxley) -- 3.1 Introduction -- 3.2 Estimating Intelligence -- 3.3 Turing Test and Intelligence Amplification -- 3.4 Measuring Intelligence Amplification -- 3.5 The Future of Intelligence Amplification -- References -- 4. VISUALIZING COMPLEXITY IN THE BRAIN (Lloyd Watts) -- 4.1 Introduction -- 4.2 Neuroscience Knowledge -- 4.3 Computing Technology -- 4.4 Nontechnical Issues -- 4.5 Conclusions -- References -- 5. EMERGING TECHNOLOGIES: ONR'S NEED FOR INTELLIGENT COMPUTATION IN UNDERWATER SENSORS (James F. McEachern and Robert T. Miyamoto) -- 5.1 Introduction -- 5.2 Background -- 5.3 The Challenge -- 5.4 Current Applications -- 5.5 Future -- 5.6 Summary -- References -- 6. BEYOND VOLTERRA AND WIENER: OPTIMAL MODELING OF NONLINEAR DYNAMICAL SYSTEMS IN A NEURAL SPACE FOR APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (Rui J. P. de Figueiredo) -- 6.1 Introduction -- 6.2 Classes of Nonlinear Dynamical System Models -- 6.3 The de Figueiredo-Dwyer-Zyla Space F -- 6.4 Derivation of Sigmoid Functionals -- 6.5 Best Robust Approximation of f in the Neural Space N -- 6.6 Optimal Combined Structural and Parametric Modeling of Nonlinear Dynamical Systems in N -- 6.7 Computationally Intelligent (CI) Systems -- 6.8 Concluding Remarks -- References -- 7. TECHNIQUES FOR EXTRACTING CLASSIFICATION AND REGRESSION RULES FROM ARTIFICIAL NEURAL NETWORKS (Rudy Setiono).
505 8 _a7.1 Introduction -- 7.2 Rule Extraction -- 7.3 Illustrative Examples -- 7.4 Conclusion -- References -- 8. NEURAL NETWORKS FOR CONTROL: RESEARCH OPPORTUNITIES AND RECENT DEVELOPMENTS (Paul J. Werbos) -- 8.1 The Challenge to Researchers: Context and Motivation -- 8.2 A Specific Challenge and Associated Issues -- 8.3 Strategies, Tasks, and Tools -- References -- 9. INTELLIGENT LEARNING ROBOTIC SYSTEMS USING COMPUTATIONAL INTELLIGENCE (Toshio Fukuda and Naoyuki Kubota) -- 9.1 Introduction -- 9.2 Motion Planning and Behavior Acquisition of Robots -- 9.3 Emerging Synthesis of Computational Intelligence -- 9.4 Intelligence on Robotic Systems -- 9.5 Structured Intelligence for Robotic Systems -- 9.6 Concluding Remarks -- References -- 10. COMPUTATIONAL INTELLIGENCE IN LOGISTICS (Hans-Jrgen Zimmermann) -- 10.1 Introduction -- 10.2 Traffic Management -- 10.3 Fleet Management -- 10.4 In-House Logistics -- 10.5 Conclusions -- References -- 11. TWO NEW CONVERGENCE RESULTS FOR ALTERNATING OPTIMIZATION (James C. Bezdek and Richard J. Hathaway) -- 11.1 Iterative Optimization -- 11.2 Existence and Uniqueness -- 11.3 The Alternating Optimization Algorithm -- 11.4 When Is Alternating Optimization a Good Choice? -- 11.5 How Do We Solve (11.1)? -- 11.6 Local Convergence of Alternating Optimization -- 11.7 Global Convergence of AO -- 11.8 Conclusions -- Acknowledgment -- References -- 12. CONSTRUCTIVE DESIGN OF A DISCRETE-TIME FUZZY CONTROLLER BASED ON PIECEWISE-LYAPUNOV FUNCTIONS (Gang Feng, Dong Sun, and Louis Wang) -- 12.1 Introduction -- 12.2 Fuzzy Dynamic Model and Its Piecewise-Quadratic Stability -- 12.3 Controller Synthesis of Fuzzy Dynamic Systems -- 12.4 Simulation Examples -- 12.5 Conclusions -- Acknowledgments -- References -- Appendix -- 13. EVOLUTIONARY COMPUTATION AND COGNITIVE SCIENCE (Janet Wiles and Jennifer Hallinan) -- 13.1 Cognitive Science: What's on Your Mind? -- 13.2 Case Studies in Evolutionary Computation and Cognitive Science -- 13.3 Summary -- References -- 14. EVOLVABLE HARDWARE AND ITS APPLICATIONS (T. Higuchi, E. Takahashi, Y. Kasai, T. Itatani, M. Iwata, H. Sakanashi, M. Murakawa, I. Kajitani, and H. Nosato).
505 8 _a14.1 Introduction -- 14.2 Myoelectric Prosthetic Hand Controller with EHW -- 14.3 Data-Compression Chip for Printing Image Data -- 14.4 Analog EHW Chip for Cellular Phone -- 14.5 An EHW-Based Clock-Timing Adjusting Chip -- 14.6 Evolvable Optical Systems and Their Application -- 14.7 Current Research on EHW -- References -- 15. HUMANIZED COMPUTATIONAL INTELLIGENCE WITH INTERACTIVE EVOLUTIONARY COMPUTATION (Hideyuki Takagi) -- 15.1 Introduction -- 15.2 Humanized Computational Intelligence -- 15.3 Interactive Evolutionary Computation -- 15.4 Conclusion -- References -- 16. UNSUPERVISED LEARNING BY ARTIFICIAL NEURAL NETWORKS (Harold Szu) -- 16.1 A New Challenge: Space-Variant Unsupervised Classifications -- 16.2 Power of Pairs: Vector versus Scalar Data -- 16.3 Generalization of Shannon's Entropy Information Theory to Open Systems -- 16.4 Benchmarks of Space-Variant Unsupervised Classification -- 16.5 Multispectral Medical Imaging -- 16.6 Multispectral Remote Sensing -- 16.7 Biological Relevance -- 16.8 Conclusion -- Acknowledgments -- References -- 17. COLLECTIVE INTELLIGENCE (David H. Wolpert) -- 17.1 Motivation and Background -- 17.2 The Mathematics of Designing Collectives -- 17.3 Tests of the Mathematics -- 17.4 Conclusion -- References -- 18. BACKPROPAGATION: GENERAL PRINCIPLES AND ISSUES FOR BIOLOGY (Paul J. Werbos) -- 18.1 Introduction -- 18.2 The Chain Rule for Ordered Derivatives -- 18.3 Backpropagation for Supervised Learning -- 18.4 Discussion and Future Research -- References -- INDEX -- ABOUT THE EDITORS.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aThe definitive survey of computational intelligence from luminaries in the field Computational intelligence is a fast-moving, multidisciplinary field - the nexus of diverse technical interest areas that include neural networks, fuzzy logic, and evolutionary computation. Keeping up with computational intelligence means understanding how it relates to an ever-expanding range of applications. This is the book that ties it all together - and puts that understanding well within your reach. In Computational Intelligence: The Experts Speak, editors David B. Fogel and Charles J. Robinson present an unmatched compilation of expanded papers from plenary and special lecturers attending the 2002 IEEE World Congress on Computational Intelligence. Collectively, these papers provide a compelling snapshot of the issues that define the industry, as observed by some of the top minds in the computational intelligence community. In a series of topical chapters, this comprehensive volume shows how current technology is shaping computational intelligence, and it delivers eye-opening insights into the field's future challenges. The research detailed here covers an array of leading-edge applications, from coevolutionary robotics to underwater sensors and cognitive science, in such areas as: . Self-organizing systems. Situation awareness. Human-machine interaction. Automatic control. Data recognition Computational Intelligence also includes introductions to each grouping of contributions that provide helpful tutorials and discuss important parallels between topics. Whatever your role might be in this dynamic, influential field, this is the one reference that no practitioner of computational intelligence should be without.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aComputational intelligence.
655 0 _aElectronic books.
695 _aAccuracy
695 _aAcoustics
695 _aActuators
695 _aAdaptation model
695 _aAdaptive control
695 _aAlgorithm design and analysis
695 _aAnalytical models
695 _aArtificial intelligence
695 _aArtificial neural networks
695 _aBackpropagation
695 _aBiographies
695 _aBiological neural networks
695 _aBiological system modeling
695 _aBiology
695 _aBirds
695 _aBoundary conditions
695 _aBrain modeling
695 _aBreast
695 _aCameras
695 _aClassification algorithms
695 _aCognition
695 _aCognitive science
695 _aCommunities
695 _aComplexity theory
695 _aComputational intelligence
695 _aComputational modeling
695 _aComputer architecture
695 _aComputer graphics
695 _aContainers
695 _aConvergence
695 _aCybernetics
695 _aData compression
695 _aEquations
695 _aEvolutionary computation
695 _aFeedforward neural networks
695 _aFlexible printed circuits
695 _aForce
695 _aForce measurement
695 _aFuzzy systems
695 _aGallium
695 _aGames
695 _aHardware
695 _aHeuristic algorithms
695 _aHilbert space
695 _aHistograms
695 _aHumans
695 _aIEC
695 _aImage coding
695 _aIndexes
695 _aIntelligent control
695 _aJoints
695 _aKernel
695 _aLabeling
695 _aLearning
695 _aLeg
695 _aLogistics
695 _aLyapunov methods
695 _aMachinery
695 _aMarine vehicles
695 _aMathematical model
695 _aMinimization
695 _aMobile robots
695 _aMorphology
695 _aNash equilibrium
695 _aNeural networks
695 _aNeuroscience
695 _aNonlinear dynamical systems
695 _aNumerical stability
695 _aOceans
695 _aOptimization
695 _aPartitioning algorithms
695 _aPhotonics
695 _aPixel
695 _aPlanning
695 _aPragmatics
695 _aPrediction algorithms
695 _aProsthetic hand
695 _aReal time systems
695 _aRobot sensing systems
695 _aRobots
695 _aRobust control
695 _aSatellites
695 _aSearch problems
695 _aSections
695 _aSensor arrays
695 _aSensor systems
695 _aSolid modeling
695 _aSonar
695 _aStability analysis
695 _aSupervised learning
695 _aSupport vector machine classification
695 _aTraining
695 _aTransportation
695 _aUnsupervised learning
695 _aVehicles
695 _aVisualization
695 _aWeapons
700 1 _aFogel, David B.
700 1 _aRobinson, Charles J.,
_d1947-
710 2 _aJohn Wiley & Sons,
_epublisher.
710 2 _aIEEE Xplore (Online service),
_edistributor.
776 0 8 _iPrint version:
_z9780471274544
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5271147
999 _c42137
_d42137