000 10223nam a2201441 i 4500
001 5361024
003 IEEE
005 20191218152119.0
006 m o d
007 cr |n|||||||||
008 080623t20152009njua ob 001 0 eng d
020 _z9780470423882
_qelectronic
020 _z0470423889
_qelectronic
020 _z0470423897
_qelectronic
020 _a9780470423899
_qelectronic
020 _z9780470192351
_qprint
024 7 _a10.1002/9780470423899
_2doi
035 _a(CaBNVSL)mat05361024
035 _a(IDAMS)0b00006481178830
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK7868.D5
_bH298 2009eb
082 0 4 _a621.381
_222
100 1 _aHall, Stephen H.,
_eauthor.
245 1 0 _aAdvanced signal integrity for high-speed digital designs /
_cStephen H. Hall, Howard L. Heck.
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons,
_c2009.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2009]
300 _a1 PDF (xvii, 660 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aPreface -- Acknowledgments -- Chapter 1: Introduction: The importance of signal integrity -- 1.1 Computing Power: Past and Future -- 1.2 The problem -- 1.3 The Basics -- 1.4 A new realm of bus design -- 1.5 Scope -- 1.6 Summary -- 1.7 References -- Chapter 2: Electromagnetic Fundamentals for Signal Integrity -- 2.1 Introduction -- 2.2 Maxwell's Equations -- 2.3 Common Vector Operators -- 2.4 Wave Propagation -- 2.5 Electrostatics -- 2.6 Magnetostatics -- 2.7 Power Flow and the Poynting Vector -- 2.8 Reflections of Electromagnetic Waves -- 2.9 References -- 2.10 Problems -- Chapter 3: Ideal Transmission Line Fundamentals -- 3.1 Transmission Line Structures -- 3.2 Wave propagation on loss free transmission lines -- 3.3 Transmission line properties -- 3.4 Transmission line parameters for the loss free case -- 3.5 Transmission line reflections -- 3.6 Time domain Reflectometry -- 3.7 References -- 3.8 Problems -- Chapter 4: Crosstalk -- 4.1 Mutual Inductance and Capacitance -- 4.2 Coupled Wave Equations -- 4.3 Coupled Line Analysis -- 4.4 Modal Analysis -- 4.5 Crosstalk Minimization -- 4.6 Summary -- 4.7 References -- 4.8 Problems -- Chapter 5: Non-ideal conductor models for transmission lines -- 5.1 Signals propagating in an unbounded conductive media -- 5.2 Classic conductor model for transmission lines -- 5.3 Surface Roughness -- 5.4 Transmission line parameters with a non-ideal conductor -- 5.5 Problems -- Chapter 6: Electrical properties of dielectrics -- 6.1 Polarization of dielectrics -- 6.2 Classification of dielectric materials -- 6.3 Frequency dependent dielectric behavior -- 6.4 Properties of a physical dielectric model -- 6.5 The fiber-weave effect -- 6.6 Environmental variation in dielectric behavior -- 6.7 Transmission line parameters for lossy dielectrics and realistic conductors -- 6.8 References -- 6.9 Problems -- Chapter 7: Differential signaling -- 7.1 Removal of common mode noise -- 7.2 Differential Crosstalk -- 7.3 Virtual reference plane -- 7.4 Propagation of Modal Voltages.
505 8 _a7.5 Common terminology -- 7.6 Drawbacks of differential signaling -- 7.7 References -- 7.8 Problems -- Chapter 8: Mathematical Requirements of Physical Channels -- 8.1 Frequency domain effects in time domain simulations -- 8.2 Requirements for a physical Channel -- 8.3 References -- 8.4 Problems -- Chapter 9: Network Analysis for Digital Engineers -- 9.1 High frequency voltage and current waves -- 9.2 Network Theory -- 9.3 Properties of Physical S-parameters -- 9.4 References -- 9.5 Problems -- Chapter 10: Topics in High-Speed Channel Modeling -- 10.1 Creating a physical transmission line mode -- 10.2 Non-Ideal Return Paths -- 10.3 Vias -- 10.4 References -- 10.5 Problems -- Chapter 11: I/O Circuits and Models -- 11.1 Introduction -- 11.2 Push-Pull Transmitters -- 11.3 CMOS Receivers -- 11.4 ESD Protection Circuits -- 11.5 On-Chip Termination -- 11.6 Bergeron Diagrams -- 11.7 Open Drain Transmitters -- 11.8 Differential Current Mode Transmitters -- 11.9 Low Swing/Differential Receivers -- 11.10 IBIS Models -- 11.11 Summary -- 11.12 References -- 11.13 Problems -- Chapter 12: Equalization -- 12.1 Introduction -- 12.2 Continuous Time Linear Equalizers -- 12.3 Discrete Linear Equalizers -- 12.4 Decision Feedback Equalization -- 12.5 Summary -- 12.6 References -- 12.7 Problems -- Chapter 13: Modeling and Budgeting of Timing Jitter and Noise -- 13.1 The Eye Diagram -- 13.2 Bit Error Rate -- 13.3 Jitter Sources and Budgets -- 13.4 Noise Sources and Budgets -- 13.5 Peak Distortion Analysis Methods -- 13.6 Summary -- 13.7 References -- 13.8 Problems -- Chapter 14: System Analysis Using Response Surface Modeling -- 14.1 Introduction -- 14.2 Case Study: 10 Gb/s differential PCB interface -- 14.3 RSM Construction by Least Squares Fitting -- 14.4 Measures of Fit -- 14.5 Significance Testing -- 14.6 Confidence Intervals -- 14.7 Sensitivity Analysis and Design Optimization -- 14.8 Defect Rate Prediction Using Monte Carlo Simulation -- 14.9 Additional RSM Considerations -- 14.10 Summary.
505 8 _a14.11 References -- 14.12 Problems -- Appendix A: Useful formulae, identities, units and constants -- Appendix B: 4-port Conversions between T and S-parameters -- Appendix C: Critical values of the F-statistic -- Appendix D: Critical values of the t-statistic -- Appendix E: Derivation of the internal inductance using the Hilbert Transform.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aA synergistic approach to signal integrity for high-speed digital design This book is designed to provide contemporary readers with an understanding of the emerging high-speed signal integrity issues that are creating roadblocks in digital design. Written by the foremost experts on the subject, it leverages concepts and techniques from non-related fields such as applied physics and microwave engineering and applies them to high-speed digital design--creating the optimal combination between theory and practical applications. Following an introduction to the importance of signal integrity, chapter coverage includes: . Electromagnetic fundamentals for signal integrity. Transmission line fundamentals. Crosstalk. Non-ideal conductor models, including surface roughness and frequency-dependent inductance. Frequency-dependent properties of dielectrics. Differential signaling. Mathematical requirements of physical channels. S-parameters for digital engineers. Non-ideal return paths and via resonance. I/O circuits and models. Equalization. Modeling and budgeting of timing jitter and noise. System analysis using response surface modeling Each chapter includes many figures and numerous examples to help readers relate the concepts to everyday design and concludes with problems for readers to test their understanding of the material. Advanced Signal Integrity for High-Speed Digital Designs is suitable as a textbook for graduate-level courses on signal integrity, for programs taught in industry for professional engineers, and as a reference for the high-speed digital designer.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aDigital electronics.
650 0 _aLogic design.
650 0 _aSignal integrity (Electronics)
655 0 _aElectronic books.
695 _aAdaptive equalizers
695 _aAnalytical models
695 _aBandwidth
695 _aBit error rate
695 _aCapacitance
695 _aCircuit synthesis
695 _aClocks
695 _aConductors
695 _aCrosstalk
695 _aCurrent density
695 _aData models
695 _aDecision feedback equalizers
695 _aDelay effects
695 _aDielectric losses
695 _aDielectrics
695 _aDriver circuits
695 _aElectromagnetic scattering
695 _aElectromagnetics
695 _aEquations
695 _aExtrapolation
695 _aFourier transforms
695 _aFrequency domain analysis
695 _aHistory
695 _aHumans
695 _aImpedance
695 _aIndexes
695 _aInductance
695 _aIntegrated circuit interconnections
695 _aIntegrated circuit modeling
695 _aInverters
695 _aJitter
695 _aLabeling
695 _aLeg
695 _aMOS devices
695 _aMagnetostatics
695 _aMaterials
695 _aMathematical model
695 _aMathematics
695 _aMaxwell equations
695 _aMeasurement units
695 _aMedia
695 _aMicrocomputers
695 _aMicrostrip
695 _aNoise
695 _aPolarization
695 _aPower transmission lines
695 _aPredictive models
695 _aPropagation
695 _aPropagation losses
695 _aReceivers
695 _aResistance
695 _aResponse surface methodology
695 _aSPICE
695 _aScattering parameters
695 _aSemiconductor device modeling
695 _aSemiconductor process modeling
695 _aSignal analysis
695 _aSignal to noise ratio
695 _aSilicon
695 _aSkin
695 _aSolid modeling
695 _aStatistics
695 _aStripline
695 _aSurface impedance
695 _aSystems engineering and theory
695 _aTime domain analysis
695 _aTime frequency analysis
695 _aTiming
695 _aTransforms
695 _aTransistors
695 _aTransmission line measurements
695 _aTransmission lines
695 _aTransmitters
700 1 _aHeck, Howard L.
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aJohn Wiley & Sons,
_epublisher.
710 2 _aebrary, Inc.
776 0 8 _iPrint version:
_z9780470192351
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5361024
999 _c42195
_d42195