000 08522nam a2201105 i 4500
001 6168882
003 IEEE
005 20191218152122.0
006 m o d
007 cr |n|||||||||
008 110713t20152012njuab ob 001 0 eng
010 _z 2011024794 (print)
020 _a9781119953081
_qoBook
020 _z9780470665336
_qprint
020 _z9781119953074
_qePDF
020 _z9781119954354
_qePub
020 _z9781119954361
_qMobi
024 7 _a10.1002/9781119953081
_2doi
035 _a(CaBNVSL)mat06168882
035 _a(IDAMS)0b000064817b5021
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK3331
_b.K63 2012eb
082 0 0 _a621.319/34
_223
100 1 _aKoch, Hermann,
_d1954-
_eauthor.
245 1 0 _aGas insulated transmission lines (GIL) /
_cHermann Koch..
264 1 _a[Piscataway, New Jersey] :
_bIEEE Press,
_c2012.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2011]
300 _a1 PDF (xi, 366 pages) :
_billustrations, maps.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references (p. [351]-359) and index.
505 0 _aForeword xiii -- Acknowledgements xv -- 1 Introduction 1 -- 1.1 Changing Electric Power Supply 1 -- 1.2 Advantages of GIL 4 -- 2 History 7 -- 2.1 Transmission Network Development 7 -- 2.2 Historical Development of GIL 20 -- 3 Technology 39 -- 3.1 Gas Insulation 41 -- 3.1.1 Free Gas Space 42 -- 3.1.2 Insulators 42 -- 3.1.3 Gas-Tight Enclosure 44 -- 3.1.4 Insulating Gases 46 -- 3.2 Basic Design 65 -- 3.2.1 Overview 65 -- 3.2.2 Dielectric Dimensioning 68 -- 3.2.3 Thermal Dimensioning 68 -- 3.2.4 Insulation Coordination 68 -- 3.2.5 Electrical Optimization 69 -- 3.2.6 Transmission Network Studies 69 -- 3.2.7 Gas Pressure Dimensions 70 -- 3.2.8 High-Voltage Design Tests 70 -- 3.2.9 Current Rating Design 72 -- 3.2.10 Short-Circuit Rating Design 73 -- 3.2.11 Internal Arc Design 74 -- 3.2.12 Electromagnetic Current Forces Design 76 -- 3.2.13 Mechanical Design 76 -- 3.2.14 Integrated Overvoltage Protection 77 -- 3.2.15 Particles 78 -- 3.2.16 Thermal Design 79 -- 3.2.17 Seismic Design 86 -- 3.3 Product Design 93 -- 3.3.1 Technical Data 93 -- 3.3.2 Conductor Pipe 95 -- 3.3.3 Enclosure Pipe 95 -- 3.3.4 Size of Gas Compartment 97 -- 3.3.5 Insulators 98 -- 3.3.6 Sliding Contacts 100 -- 3.3.7 Modular Design 100 -- 3.3.8 Overhead Line Connection 103 -- 3.3.9 Bending Radius 103 -- 3.3.10 Joint Technology for Conductor and Enclosure 104 -- 3.3.10.1 Flanged Joints 105 -- 3.3.11 Corrosion Protection 112 -- 3.3.12 On-Site Assembly Work 116 -- 3.3.13 Monitoring 117 -- 3.4 Quality Control and Diagnostic Tools 123 -- 3.4.1 Quality of Parts 124 -- 3.4.2 Quality of Processes 124 -- 3.4.3 Partial Discharge Detection 125 -- 3.4.4 High-Voltage Testing On-Site 126 -- 3.4.5 Conclusion of Quality Control 130 -- 3.5 Planning Issues 131 -- 3.5.1 Network Impact 131 -- 3.5.2 Reliability 139 -- 3.5.3 Grounding/Earthing 141 -- 3.5.4 Safety 141 -- 3.5.5 Environmental Limitations 143 -- 3.5.6 Electric Phase Angle Compensation 145 -- 3.5.7 Loadability and Capability Overload 145 -- 3.6 Specification Checklist 149.
505 8 _a3.7 Laying Options 153 -- 3.7.1 General 153 -- 3.7.2 Above-Ground Installation 154 -- 3.7.3 Trench-Laid 159 -- 3.7.4 Tunnel-Laid 160 -- 3.7.5 Directly Buried 166 -- 3.7.6 Directional Boring 182 -- 3.8 Long-Duration Testing 183 -- 3.8.1 General 183 -- 3.8.2 Tunnel Version 184 -- 3.8.3 Directly Buried Version 197 -- 3.8.4 Long-Duration Test Results 215 -- 3.9 Gas Handling 217 -- 3.9.1 General 217 -- 3.9.2 Gas Mixture Handling 217 -- 3.9.3 Conclusion 219 -- 3.10 Commissioning and On-Site Testing 221 -- 4 System and Network 225 -- 4.1 General 225 -- 4.2 Line Constants of GIL 225 -- 4.3 Transmission Losses 228 -- 4.4 Operational Aspects 231 -- 4.5 Ageing 234 -- 4.6 Internal Arc Fault 235 -- 4.7 Maintenance 236 -- 4.8 Repair 237 -- 4.9 Personnel Safety 237 -- 4.10 Insulation Coordination 238 -- 4.11 System Control 247 -- 5 Environmental Impact 253 -- 5.1 General 253 -- 5.2 Visual Impact 253 -- 5.3 Electromagnetic Fields 254 -- 5.4 Gas Handling 267 -- 5.5 Thermal Aspects 267 -- 5.6 Recycling 268 -- 5.7 Lifecycle Assessment 269 -- 5.8 CO2 Footprint 269 -- 6 Economic Aspects 273 -- 6.1 General 273 -- 6.2 Material Cost 273 -- 6.3 Assembly Cost 275 -- 6.4 Transmission Losses 276 -- 6.5 Cost Drivers 277 -- 7 Applications 279 -- 7.1 General 279 -- 7.2 Examples 280 -- 7.3 Future Application 312 -- 7.4 Case Studies 314 -- 8 Comparison of Transmission Systems 323 -- 8.1 General 323 -- 8.2 GIL Features 323 -- 8.3 Technical Comparison 324 -- 8.4 Site Comparison 330 -- 8.5 Soft Parameters 332 -- 8.6 Economics 333 -- 9 Power Transmission Pipeline 335 -- 9.1 Feasibility Study 336 -- 9.2 Offshore Wind Energy in Europe 339 -- 9.3 Under Sea Tunnel System 339 -- 9.4 Offshore and Onshore PTPTM Constructions 344 -- 9.5 Next-Generation Technology 346 -- 9.6 Offshore Environment 346 -- 10 Conclusion 349 -- References 351 -- Index 361.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aGas-insulated transmission lines (GIL) is an established high voltage technology used when environmental or structural considerations restrict the use of overhead transmission lines. With an overview on the technical, economical and environmental impact and power system implications of GIL, this guide provides a complete understanding of its physical design, features and advantages. The author illustrates how to evaluate when GIL would be the best solution during the planning sequence and how to apply GIL in the electricity power network.Other key features include:. operation and maintenance requirements with information on repair processes, duration, and different monitoring systems enabling the achievement of reliable and safe operation;. a wide variety of realized applications from across the world over the past 35 years, illustrating typical fields of application through descriptions of real projects that the author has worked on; and. future application possibilities in a smart transmission network, used for solving power transmission problems.This is an essential reference for engineers involved in planning and executing bulk power transmission projects overground, in tunnels or buried. It offers a concise summary of all areas of the subject and is the perfect aid for utility power engineers, consulting engineers and manufacturers worldwide.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aElectric cables
_xGas insulation.
655 0 _aElectronic books.
695 _aAluminum
695 _aAvailability
695 _aBridge circuits
695 _aCapacitance
695 _aCities and towns
695 _aCompanies
695 _aConductors
695 _aCorrosion
695 _aDielectric losses
695 _aDielectrics
695 _aEurope
695 _aGas insulated transmission lines
695 _aGases
695 _aHydroelectric power generation
695 _aIEC standards
695 _aImpedance
695 _aIndexes
695 _aInsulation
695 _aInsulators
695 _aInvestments
695 _aJoints
695 _aMagnetic noise
695 _aMagnetic resonance imaging
695 _aMagnetic shielding
695 _aMagnetic tunneling
695 _aMaterials
695 _aNorth America
695 _aOil filled cables
695 _aPatents
695 _aPower cables
695 _aPower generation
695 _aPower transformer insulation
695 _aPower transmission
695 _aPower transmission lines
695 _aPrinters
695 _aPropagation losses
695 _aReliability
695 _aRoads
695 _aShafts
695 _aSubstations
695 _aSulfur hexafluoride
695 _aSurges
695 _aSwitches
695 _aSwitchgear
695 _aTrademarks
695 _aWelding
695 _aWind energy
695 _aWind farms
695 _aWind turbines
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aJohn Wiley & Sons,
_epublisher.
776 0 8 _iPrint version:
_w 2011024794 (print)
_z9780470665336
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6168882
999 _c42389
_d42389