000 10407nam a2200589 i 4500
001 8618646
003 IEEE
005 20191218152135.0
006 m o d
007 cr |n|||||||||
008 190319s2018 mau ob 001 eng d
010 _z 2018033401 (print)
020 _a9781119476863
_qelectronic
020 _z9781119476795
_qprint
020 _z9781119476849
_qAdobe PDF
020 _z9781119476832
_qePub
024 7 _a10.1002/9781119476863
_2doi
035 _a(CaBNVSL)mat08618646
035 _a(IDAMS)0b00006488a636c8
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 1 0 _aTK3088
082 0 0 _a621.381/044
_223
245 0 0 _aWireless information and power transfer :
_btheory and practice /
_cedited by Derrick Wing Kwan Ng, The University of New South Wales, Sydney, Australia, Trung Q Duong, Queen's University Belfast, Belfast, UK, Caijun Zhong, Zhejiang University, Zhejiang, People's Republic of China, Robert Schober, University of Erlangen-Nuremberg, Erlangen, Germany.
250 _aFirst edition.
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons, Inc.,
_c[2018]
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2018]
300 _a1 PDF (320 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aList of Contributors xiii -- Preface xvii -- 1 The Era of Wireless Information and Power Transfer 1 /DerrickWing Kwan Ng, Trung Q. Duong, Caijun Zhong, and Robert Schober -- 1.1 Introduction 1 -- 1.2 Background 3 -- 1.2.1 RF-BasedWireless Power Transfer 3 -- 1.2.2 Receiver Structure forWIPT 4 -- 1.3 Energy Harvesting Model andWaveform Design 6 -- 1.4 Efficiency and Interference Management inWIPT Systems 9 -- 1.5 Security in SWIPT Systems 10 -- 1.6 CooperativeWIPT Systems 11 -- 1.7 WIPT for 5G Applications 11 -- 1.8 Conclusion 12 -- Acknowledgement 13 -- Bibliography 13 -- 2 Fundamentals of Signal Design for WPT and SWIPT 17 /Bruno Clerckx andMorteza Varasteh -- 2.1 Introduction 17 -- 2.2 WPT Architecture 19 -- 2.3 WPT Signal and System Design 21 -- 2.4 SWIPT Signal and System Design 29 -- 2.5 Conclusions and Observations 33 -- Bibliography 33 -- 3 Unified Design ofWireless Information and Power Transmission 39 /Dong In Kim, Jong Jin Park, Jong HoMoon, and Kang Yoon Lee -- 3.1 Introduction 39 -- 3.2 Nonlinear EH Models 40 -- 3.3 Waveform and Transceiver Design 43 -- 3.3.1 Multi-tone (PAPR) based SWIPT 43 -- 3.3.2 Dual Mode SWIPT 48 -- 3.4 Energy Harvesting Circuit Design 53 -- 3.5 Discussion and Conclusion 58 -- Bibliography 58 -- 4 Industrial SWIPT: Backscatter Radio and RFIDs 61 /Panos N. Alevizos and Aggelos Bletsas -- 4.1 Introduction 61 -- 4.2 Wireless Signal Model 62 -- 4.3 RFID Tag Operation 64 -- 4.3.1 RF Harvesting and Powering for RFID Tag 64 -- 4.3.2 RFID Tag Backscatter (Uplink) Radio 65 -- 4.4 Reader BER for Operational RFID 68 -- 4.5 RFID Reader SWIPT Reception 69 -- 4.5.1 Harvesting Sensitivity Outage 69 -- 4.5.2 Power Consumption Outage 70 -- 4.5.3 Information Outage 71 -- 4.5.4 Successful SWIPT Reception 71 -- 4.6 Numerical Results 72 -- 4.7 Conclusion 76 -- Bibliography 76 -- 5 Multi-antenna Energy Beamforming for SWIPT 81 /Jie Xu and Rui Zhang -- 5.1 Introduction 81 -- 5.2 System Model 84 -- 5.3 Rate-Energy Region Characterization 87 -- 5.3.1 Problem Formulation 87.
505 8 _a5.3.2 Optimal Solution 90 -- 5.4 Extensions 93 -- 5.5 Conclusion 94 -- Bibliography 95 -- 6 On the Application of SWIPT in NOMA Networks 99 /Yuanwei Liu andMaged Elkashlan -- 6.1 Introduction 99 -- 6.1.1 Motivation 100 -- 6.2 Network Model 101 -- 6.2.1 Phase 1: Direct Transmission 101 -- 6.2.2 Phase 2: Cooperative Transmission 104 -- 6.3 Non-Orthogonal Multiple Access with User Selection 105 -- 6.3.1 RNRF Selection Scheme 105 -- 6.3.2 NNNF Selection Scheme 108 -- 6.3.3 NNFF Selection Scheme 111 -- 6.4 Numerical Results 112 -- 6.4.1 Outage Probability of the Near Users 112 -- 6.4.2 Outage Probability of the Far Users 115 -- 6.4.3 Throughput in Delay-Sensitive Transmission Mode 116 -- 6.5 Conclusions 117 -- Bibliography 118 -- 7 Fairness-AwareWireless Powered Communications with Processing Cost 121 /Zoran Hadzi-Velkov, Slavche Pejoski, and Nikola Zlatanov -- 7.1 Introduction 121 -- 7.2 System Model 122 -- 7.2.1 Energy Storage Strategies 124 -- 7.2.2 Circuit Power Consumption 124 -- 7.3 Proportionally Fair Resource Allocation 125 -- 7.3.1 Short-term Energy Storage Strategy 125 -- 7.3.2 Long-term Energy Storage Strategy 127 -- 7.3.3 Practical Online Implementation 130 -- 7.3.4 Numerical Results 131 -- 7.4 Conclusion 133 -- 7.5 Appendix 133 -- 7.5.1 Proof of Theorem 7.2 133 -- Bibliography 136 -- 8 Wireless Power Transfer in MillimeterWave 139 /Talha Ahmed Khan and RobertW. Heath Jr -- 8.1 Introduction 139 -- 8.2 System Model 141 -- 8.3 Analytical Results 143 -- 8.4 Key Insights 147 -- 8.5 Conclusions 151 -- 8.6 Appendix 153 -- Bibliography 154 -- 9 Wireless Information and Power Transfer in Relaying Systems 157 /P. D. Diamantoulakis, K. N. Pappi, and G. K. Karagiannidis -- 9.1 Introduction 157 -- 9.2 Wireless-Powered Cooperative Networks with a Single Source-Destination Pair 158 -- 9.2.1 System Model and Outline 158 -- 9.2.2 Wireless Energy Harvesting Relaying Protocols 159 -- 9.2.3 Multiple Antennas at the Relay 161 -- 9.2.4 Multiple Relays and Relay Selection Strategies 163.
505 8 _a9.2.5 Power Allocation Strategies for Multiple Carriers 166 -- 9.3 Wireless-Powered Cooperative Networks with Multiple Sources 168 -- 9.3.1 System Model 168 -- 9.3.2 Power Allocation Strategies 169 -- 9.3.3 Multiple Relays and Relay Selection Strategies 173 -- 9.3.4 Two-Way Relaying Networks 175 -- 9.4 Future Research Challenges 176 -- 9.4.1 Nonlinear Energy Harvesting Model and Hardware Impairments 176 -- 9.4.2 NOMA-based Relaying 176 -- 9.4.3 Large-Scale Networks 176 -- 9.4.4 Cognitive Relaying 177 -- Bibliography 177 -- 10 Harnessing Interference in SWIPT Systems 181 /Stelios Timotheou, Gan Zheng, Christos Masouros, and Ioannis Krikidis -- 10.1 Introduction 181 -- 10.2 System Model 183 -- 10.3 Conventional Precoding Solution 184 -- 10.4 Joint Precoding and Power Splitting with Constructive -- Interference 185 -- 10.4.1 Problem Formulation 186 -- 10.4.2 Upper Bounding SOCP Algorithm 188 -- 10.4.3 Successive Linear Approximation Algorithm 190 -- 10.4.4 Lower Bounding SOCP Formulation 191 -- 10.5 Simulation Results 192 -- 10.6 Conclusions 194 -- Bibliography 194 -- 11 Physical Layer Security in SWIPT Systems with Nonlinear Energy Harvesting Circuits 197 /Yuqing Su, DerrickWing Kwan Ng, and Robert Schober -- 11.1 Introduction 197 -- 11.2 Channel Model 200 -- 11.2.1 Energy Harvesting Model 201 -- 11.2.2 Channel State Information Model 203 -- 11.2.3 Secrecy Rate 204 -- 11.3 Optimization Problem and Solution 204 -- 11.4 Results 208 -- 11.5 Conclusions 211 -- Appendix-Proof of Theorem 11.1 211 -- Bibliography 213 -- 12 Wireless-Powered Cooperative Networks with Energy Accumulation 217 /Yifan Gu, He Chen, and Yonghui Li -- 12.1 Introduction 217 -- 12.2 System Model 219 -- 12.3 Energy Accumulation of Relay Battery 222 -- 12.3.1 Transition Matrix of the MC 222 -- 12.3.2 Stationary Distribution of the Relay Battery 224 -- 12.4 Throughput Analysis 224 -- 12.5 Numerical Results 226 -- 12.6 Conclusion 228 -- 12.7 Appendix 229 -- Bibliography 231 -- 13 Spectral and Energy-EfficientWireless-Powered IoT Networks 233 /QingqingWu,Wen Chen, and Guangchi Zhang.
505 8 _a13.1 Introduction 233 -- 13.2 System Model and Problem Formulation 235 -- 13.2.1 System Model 235 -- 13.2.2 T-WPCN and Problem Formulation 236 -- 13.2.3 N-WPCN and Problem Formulation 237 -- 13.3 T-WPCN or N-WPCN? 237 -- 13.3.1 Optimal Solution for T-WPCN 238 -- 13.3.2 Optimal Solution for N-WPCN 239 -- 13.3.3 TDMA versus NOMA 240 -- 13.4 Numerical Results 243 -- 13.4.1 SE versus PB Transmit Power 243 -- 13.4.2 SE versus Device Circuit Power 245 -- 13.5 Conclusions 245 -- 13.6 FutureWork 247 -- Bibliography 247 -- 14 Wireless-PoweredMobile Edge Computing Systems 253 /FengWang, Jie Xu, XinWang, and Shuguang Cui -- 14.1 Introduction 253 -- 14.2 System Model 256 -- 14.3 Joint MEC-WPT Design 260 -- 14.3.1 Problem Formulation 260 -- 14.3.2 Optimal Solution 260 -- 14.4 Numerical Results 266 -- 14.5 Conclusion 268 -- Bibliography 268 -- 15 Wireless Power Transfer: A Macroscopic Approach 273 /Constantinos Psomas and Ioannis Krikidis -- 15.1 Wireless-Powered Cooperative Networks with Energy Storage 274 -- 15.1.1 System Model 274 -- 15.1.2 Relay Selection Schemes 276 -- 15.1.3 Numerical Results 280 -- 15.2 Wireless-Powered Ad Hoc Networks with SIC and SWIPT 282 -- 15.2.1 System Model 282 -- 15.2.2 SWIPT with SIC 284 -- 15.2.3 Numerical Results 285 -- 15.3 AWireless-Powered Opportunistic Feedback Protocol 286 -- 15.3.1 System Model 287 -- 15.3.2 Wireless-Powered OBF Protocol 290 -- 15.3.3 Beam Outage Probability 290 -- 15.3.4 Numerical Results 292 -- 15.4 Conclusion 293 -- Bibliography 294 -- Index 297.
506 _aRestricted to subscribers or individual electronic text purchasers.
520 _a"Written for students, researchers, and engineers in the field of wireless communications, Wireless Information and Power Transfer is a comprehensive guide to the theory, models, techniques, practical implementation and application of wireless information and power transfer"--
_cProvided by publisher.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
650 0 _aWireless power transmission.
650 0 _aWireless communication systems.
655 0 _aElectronic books.
700 1 _aNg, Derrick Wing Kwan,
_eeditor.
700 1 _aDuong, Trung Q.,
_eeditor.
700 1 _aZhong, Caijun,
_c(Professor of electrical engineering),
_eeditor.
700 1 _aSchober, Robert,
_eeditor.
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aWiley,
_epublisher.
776 0 8 _iPrint version:
_tWireless information and power transfer
_bFirst edition.
_dHoboken, NJ : John Wiley & Sons, Inc., [2018]
_z9781119476795
_w(DLC) 2018032339
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8618646
999 _c43109
_d43109