000 06964nam a2200577 i 4500
001 8850229
003 IEEE
005 20191218152135.0
006 m o d
007 cr |n|||||||||
008 191003s2019 mau ob 001 eng d
020 _a9781119612377
_qelectronic bk. : oBook
020 _a1119612306
020 _z9781119612315
_qprint
020 _z1119612373
_qelectronic bk. : oBook
020 _z9781119612308
_qElectronic
024 7 _a10.1002/9781119612377
_2doi
035 _a(CaBNVSL)mat08850229
035 _a(IDAMS)0b0000648b479c6b
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK7871.6
082 0 4 _a621.382/4
_223
100 1 _a�Stumpf, Martin,
_eauthor.
245 1 0 _aTime-Domain Electromagnetic Reciprocity in Antenna Modeling /
_cMartin �Stumpf.
264 1 _aHoboken :
_bWiley,
_cc2020.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2019]
300 _a1 PDF (249 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE Press Series on Electromagnetic Wave Theory
500 _a14.5 EXTENSION TO A WIDE-STRIP ANTENNA
504 _aIncludes bibliographical references and index.
505 0 _aIntro; TITLE PAGE; COPYRIGHT PAGE; CONTENTS; PREFACE; ACRONYMS; CHAPTER 1 INTRODUCTION; 1.1 SYNOPSIS; 1.2 PREREQUISITES; 1.2.1 One-Sided Laplace Transformation; 1.2.2 Lorentz's Reciprocity Theorem; CHAPTER 2 CAGNIARD-DEHOOP METHOD OF MOMENTS FOR THIN-WIRE ANTENNAS; 2.1 PROBLEM DESCRIPTION; 2.2 PROBLEM FORMULATION; 2.3 PROBLEM SOLUTION; 2.4 ANTENNA EXCITATION; 2.4.1 Plane-Wave Excitation; 2.4.2 Delta-Gap Excitation; ILLUSTRATIVE EXAMPLE; CHAPTER 3 PULSED EM MUTUAL COUPLING BETWEEN PARALLEL WIRE ANTENNAS; 3.1 PROBLEM DESCRIPTION; 3.2 PROBLEM FORMULATION; 3.3 PROBLEM SOLUTION
505 8 _aCHAPTER 4 INCORPORATING WIRE-ANTENNA LOSSES4.1 MODIFICATION OF THE IMPEDANCE MATRIX; CHAPTER 5 CONNECTING A LUMPED ELEMENT TO THE WIRE ANTENNA; 5.1 MODIFICATION OF THE IMPEDANCE MATRIX; CHAPTER 6 PULSED EM RADIATION FROM A STRAIGHT WIRE ANTENNA; 6.1 PROBLEM DESCRIPTION; 6.2 SOURCE-TYPE REPRESENTATIONS FOR THE TD RADIATED EM FIELDS; 6.3 FAR-FIELD TD RADIATION CHARACTERISTICS; CHAPTER 7 EM RECIPROCITY BASED CALCULATION OF TD RADIATION CHARACTERISTICS; 7.1 PROBLEM DESCRIPTION; 7.2 PROBLEM SOLUTION; ILLUSTRATIVE NUMERICAL EXAMPLE
505 8 _aCHAPTER 8 INFLUENCE OF A WIRE SCATTERER ON A TRANSMITTING WIRE ANTENNA8.1 PROBLEM DESCRIPTION; 8.2 PROBLEM SOLUTION; ILLUSTRATIVE NUMERICAL EXAMPLE; CHAPTER 9 INFLUENCE OF A LUMPED LOAD ON EM SCATTERING OF A RECEIVING WIRE ANTENNA; 9.1 PROBLEM DESCRIPTION; 9.2 PROBLEM SOLUTION; ILLUSTRATIVE NUMERICAL EXAMPLE; CHAPTER 10 INFLUENCE OF A WIRE SCATTERER ON A RECEIVING WIRE ANTENNA; 10.1 PROBLEM DESCRIPTION; 10.2 PROBLEM SOLUTION; ILLUSTRATIVE NUMERICAL EXAMPLE; CHAPTER 11 EM-FIELD COUPLING TO TRANSMISSION LINES; 11.1 INTRODUCTION; 11.2 PROBLEM DESCRIPTION; 11.3 EM-FIELD-TO-LINE INTERACTION
505 8 _a11.4 RELATION TO AGRAWAL COUPLING MODEL11.5 ALTERNATIVE COUPLING MODELS BASED ON EM RECIPROCITY; 11.5.1 EM Plane-Wave Incidence; 11.5.2 Known EM Source Distribution; CHAPTER 12 EM PLANE-WAVE INDUCED THE�VENIN'S VOLTAGE ON TRANSMISSION LINES; 12.1 TRANSMISSION LINE ABOVE THE PERFECT GROUND; 12.1.1 Th�evenin's Voltage at x = x1; 12.1.2 Th�evenin's Voltage at x = x2; 12.2 NARROW TRACE ON A GROUNDED SLAB; 12.2.1 Th�evenin's Voltage at x = x1; 12.2.2 Th�evenin's Voltage at x = x2; ILLUSTRATIVE NUMERICAL EXAMPLE; CHAPTER 13 VED-INDUCED THE�VENIN'S VOLTAGE ON TRANSMISSION LINES
505 8 _a13.1 TRANSMISSION LINE ABOVE THE PERFECT GROUND13.1.1 Excitation EM Fields; 13.1.2 Th�evenin's Voltage at x = x1; 13.1.3 Th�evenin's Voltage at x = x2; 13.2 INFLUENCE OF FINITE GROUND CONDUCTIVITY; 13.2.1 Excitation EM Fields; 13.2.2 Correction to Th�evenin's Voltage at x = x1; 13.2.3 Correction to Th�evenin's Voltage at x = x2; ILLUSTRATIVE NUMERICAL EXAMPLE; CHAPTER 14 CAGNIARD-DEHOOP METHOD OF MOMENTS FOR PLANAR-STRIP ANTENNAS; 14.1 PROBLEM DESCRIPTION; 14.2 PROBLEM FORMULATION; 14.3 PROBLEM SOLUTION; 14.4 ANTENNA EXCITATION; 14.4.1 Plane-Wave Excitation; 14.4.2 Delta-Gap Excitation
506 _aRestricted to subscribers or individual electronic text purchasers.
520 _aDescribes applications of time-domain EM reciprocity and the Cagniard-deHoop technique to achieve solutions to fundamental antenna radiation and scattering problems This book offers an account of applications of the time-domain electromagnetic "TD EM" reciprocity theorem for solving selected problems of antenna theory. It focuses on the development of both TD numerical schemes and analytical methodologies suitable for analyzing TD EM wave fields associated with fundamental antenna topologies. Time-Domain Electromagnetic Reciprocity in Antenna Modeling begins by applying the reciprocity theorem to formulate a fundamentally new TD integral equation technique—the Cagniard-deHoop method of moments "CdH-MoM"—regarding the pulsed EM scattering and radiation from a thin-wire antenna. Subsequent chapters explore the use of TD EM reciprocity to evaluate the impact of a scatterer and a lumped load on the performance of wire antennas and propose a straightforward methodology for incorporating ohmic loss in the introduced solution methodology. Other topics covered in the book include the pulsed EM field coupling to transmission lines, formulation of the CdH-MoM concerning planar antennas, and more. In addition, the book is supplemented with simple MATLAB code implementations, so that readers can test EM reciprocity by conducting "numerical" experiments. In addition, this text: . Applies the thin-sheet boundary conditions to incorporate dielectric, conductive and plasmonic properties of planar antennas. Provides illustrative numerical examples that validate the described methodologies. Presents analyzed problems at a fundamental level so that readers can fully grasp the underlying principles of solution methodologies. Includes appendices to supplement material in the book Time-Domain Electromagnetic Reciprocity in Antenna Modeling is an excellent book for researchers and professors in EM modeling and for applied researchers in the industry.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 10/03/2019.
650 0 _aAntennas (Electronics)
655 4 _aElectronic books.
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aWiley,
_epublisher.
776 0 8 _iPrint version:
_aStumpf, Martin
_tTime-Domain Electromagnetic Reciprocity in Antenna Modeling
_dNewark : John Wiley & Sons, Incorporated,c2019
_z9781119612315
830 0 _aIEEE Press series on electromagnetic wave theory.
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8850229
999 _c43148
_d43148